Sunday, September 11, 2011

Sixth 6th Semester AERONAUTICAL ENGINEERING ANNA UNIVERSITY SYLLABUS FOR BE/B.TECH STUDENTS


UNIVERSITY CHENNAI : : CHENNAI - 600 025
REGULATION 2008 - CURRICULUM
B.E. AERONAUTICAL ENGINEERING
AFFILIATED INSTITUTIONS
SEMESTER VI
(Applicable to the students admitted from the Academic year 2008 – 2009 onwards)
THEORY
MG2351 Principles of Management  
AE2351 Finite Element Method  
AE2352 Experimental Stress Analysis  
AE2353 Wind Tunnel Techniques  
AE2354 High temperature materials  
Elective – I

PRACTICAL
AE2355 Aero Engine Laboratory
AE2356 Aircraft Design Project - I
AE2357 Airframe Laboratory

MG2351 PRINCIPLES OF MANAGEMENT L T P C
(Common to all Branches)  
UNIT I OVERVIEW OF MANAGEMENT 9
Definition - Management - Role of managers - Evolution of Management thought -
Organization and the environmental factors – Trends and Challenges of Management in
Global Scenario.
UNIT II PLANNING 9
Nature and purpose of planning - Planning process - Types of plans – Objectives - -
Managing by objective (MBO) Strategies - Types of strategies - Policies - Decision
Making - Types of decision - Decision Making Process - Rational Decision Making
Process - Decision Making under different conditions.
UNIT III ORGANIZING 9
Nature and purpose of organizing - Organization structure - Formal and informal groups I
organization - Line and Staff authority - Departmentation - Span of control -
Centralization and Decentralization - Delegation of authority - Staffing - Selection and
Recruitment - Orientation - Career Development - Career stages – Training - -
Performance Appraisal.
UNIT IV DIRECTING 9
Creativity and Innovation - Motivation and Satisfaction - Motivation Theories -
Leadership Styles - Leadership theories - Communication - Barriers to effective
communication - Organization Culture - Elements and types of culture - Managing
cultural diversity.
UNIT V CONTROLLING 9
Process of controlling - Types of control - Budgetary and non-budgetary control
techniques - Managing Productivity - Cost Control - Purchase Control - Maintenance
Control - Quality Control - Planning operations.
TOTAL= 45 PERIODS
TEXT BOOKS:


1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India,
8th edition.
2. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill
Education, Special Indian Edition, 2007.
REFERENCES:
1. Hellriegel, Slocum & Jackson, ' Management - A Competency Based Approach',
Thomson South Western, 10th edition, 2007.
2. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management - A global
& Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.
3. Andrew J. Dubrin, 'Essentials of Management', Thomson Southwestern, 7th
edition, 2007.
4
AE2351 FINITE ELEMENT METHOD L T P C

OBJECTIVE
To introduce the concept of numerical analysis of structural components
UNIT I INTRODUCTION 4
Review of basic approximate methods of analyses – Stiffness and Flexibility matrix for
simple cases – Governing equation and convergence criteria of finite element method.
UNIT II DISCRETE ELEMENTS 12
Bar, Frame, beam elements – Application to static, dynamic and stability analysis.
UNIT III CONTINUUM ELEMENTS 10
Various types of 2-D-elements Application to plane stress, plane strain and axisymmetric
problems.
UNIT IV ISOPARAMETRIC ELEMENTS 10
Applications to two and three-dimensional problems.
UNIT V FIELD PROBLEM 9
Applications to other field problems like heat transfer and fluid flow.
TOTAL: 45 PERIODS
TEXT BOOK
1. Tirupathi.R.C and Ashok D.B, “Introduction to Finite Elements in Engineering”,
Prentice Hall India, Third Edition, 2003.
REFERENCES
1. Reddy J.N. “An Introduction to Finite Element Method”, McGraw-Hill, 2000.
2. Krishnamurthy, C.S., “Finite Element Analysis”, Tata McGraw-Hill, 2000.
3. Bathe, K.J. and Wilson, E.L., “Numerical Methods in Finite Elements Analysis”,
Prentice Hall of India, 1985.
AE2352 EXPERIMENTAL STRESS ANALYSIS L T P C

OBJECTIVE
To bring awareness on experimental method of finding the response of the structure to
different types of load.
UNIT I MEASUREMENTS & EXTENSOMETER 10
Principles of measurements, Accuracy, Sensitivity and range of measurements.
Mechanical, Optical Acoustical and Electrical extensometers and their uses, Advantages
and disadvantages.
UNIT II ELECTRICAL RESISTANCE STRAIN GAUGES 10
Principle of operation and requirements, Types and their uses, Materials for strain
gauge. Calibration and temperature compensation, cross sensitivity, Rosette analysis,
Wheastone bridge and potentiometer circuits for static and dynamic strain
measurements, strain indicators.
5
UNIT III PHOTOELASTICITY 10
Two dimensional photo elasticity, Concept of light – photoelastic effects, stress optic law,
Interpretation of fringe pattern, Compensation and separation techniques, Photo elastic
materials. Introduction to three dimensional photo elasticity.
UNIT IV BRITTLE COATING AND MOIRE METHODS 8
Introduction to Moire techniques, brittle coating methods and holography.
UNIT V NON – DESTRUCTIVE TESTING 7
Fundamentals of NDT,Radiography, ultrasonic, magnetic particle inspection, Fluorescent
penetrant technique, Eddy current testing, Acoustic Emission Technique.
TOTAL: 45 PERIODS
TEXT BOOKS
1. Srinath, L.S., Raghava, M.R., Lingaiah, K., Garagesha, G., Pant B., and
Ramachandra, K., “Experimental Stress Analysis”, Tata McGraw-Hill, New Delhi,
1984.
REFERENCES
1. Dally, J.W., and Riley, W.F., “Experimental Stress Analysis”, McGraw-Hill Inc., New
York, 2005, IV edition.
2. Hetyenyi, M., “Hand book of Experimental Stress Analysis”, John Wiley and Sons
Inc., New York, 1972.
3. Pollock A.A., “Acoustic Emission in Acoustics and Vibration Progress”, Ed. Stephens
R.W.B., Chapman and Hall, 1993
AE2353 WIND TUNNEL TECHNIQUES L T P C

OBJECTIVE
To introduce the basic concepts of measurement of forces and moments on models
during the wind tunnel testing.
UNIT I WIND TUNNELS 10
Classification –non-dimensional numbers-types of similarities - Layout of open circuit
and closed circuit subsonic wind tunnels – design parameters-energy ratio - HP
calculations. Calibration.
UNIT II HIGH SPEED WIND TUNNELS 10
Blow down, in draft and induction tunnel layouts and their design features, Transonic,
supersonic and hypersonic tunnels, their peculiarities and calibration. Helium and gun
tunnels, Shock tubes,
UNIT III WIND TUNNEL MEASUREMENTS 12
Pressure,velocity and temperature measurements – Force measurements – types of
balances-Three component and six component balances – calibration of measuring
instruments.
6
UNIT IV FLOW VISUALIZATION 6
Smoke and Tuft grid techniques – Dye injection special techniques – Optical methods of
flow visualization.
UNIT V NON-INTRUSIVE FLOW DIAGNOSTICS 7
Laser – Doppler anemometry. Particle image velocimetry. Laser induced fluorescence.
TOTAL: 45 PERIODS
TEXT BOOK
1. Rae, W.H. and Pope, A. “Low Speed Wind Tunnel Testing”, John Wiley Publication,
1984.
REFERENCE
1. Pope, A., and Goin, L., “High Speed wind Tunnel Testing”, John Wiley, 1985.
AE2354 HIGH TEMPERATURE MATERIALS L T P C

OBJECTIVE
To learn damage mechanism and failure of components of elevated temperatures
UNIT I CREEP 9
Factors influencing functional life of components at elevated temperatures, definition of
creep curve, various stages of creep, metallurgical factors influencing various stages,
effect of stress, temperature and strain rate.
UNIT II DESIGN FOR CREEP RESISTANCE 9
Design of transient creep time, hardening, strain hardening, expressions of rupture life of
creep, ductile and brittle materials, Monkman-Grant relationship.
UNIT III FRACTURE 9
Various types of fracture, brittle to ductile from low temperature to high temperature,
cleavage fracture, ductile fracture due to micro void coalescence-diffusion controlled
void growth; fracture maps for different alloys and oxides.
UNIT IV OXIDATION AND HOT CORROSION 9
Oxidation, Pilling, Bedworth ratio, kinetic laws of oxidation- defect structure and control
of oxidation by alloy additions, hot gas corrosion deposit, modified hot gas corrosion,
fluxing mechanisms, effect of alloying elements on hot corrosion, interaction of hot
corrosion and creep, methods of combat hot corrosion.
UNIT V SUPERALLOYS AND OTHER MATERIALS 9
Iron base, Nickel base and Cobalt base super alloys, composition control, solid solution
strengthening, precipitation hardening by gamma prime, grain boundary strengthening,
TCP phase, embrittlement, solidification of single crystals, Intermetallics, high
temperature ceramics.
TOTAL : 45 PERIODS
7
TEXT BOOKS
1. Raj. R., “Flow and Fracture at Elevated Temperatures”, American Society for Metals,
USA, 1985.
2. Hertzberg R. W., “Deformation and Fracture Mechanics of Engineering materials”, 4th
Edition, John Wiley, USA, 1996.
3. Courtney T.H, “Mechanical Behavior of Materials”, McGraw-Hill, USA, 1990.
REFERENCES
1. Boyle J.T, Spencer J, “Stress Analysis for Creep”, Butterworths, UK, 1983.
2. Bressers. J., “Creep and Fatigue in High Temperature Alloys”, Applied Science, 1981.
3. McLean D., “Directionally Solidified Materials for High Temperature Service”, The
Metals Society, USA, 1985.
AE2355 AERO ENGINE LABORATORY L T P C
0 0 3 2
OBJECTIVE
To introduce the knowledge of the maintenance and repair of both piston and jet aero
engines and the procedures followed for overhaul of aero engines.
1. Dismantling of a piston engine
2. Engine (Piston Engine) - cleaning, visual inspection, NDT checks.
3. Piston Engine Components - dimensional checks.
4. Study of carburetor.
5. Piston – Engine reassembly.
6. Dismantling of a jet engine
7. Jet Engine – identification of components & defects.
8. Jet Engine – NDT checks and dimensional checks
9. Jet Engine – reassembly.
10. Engine starting procedures.
TOTAL: 60 PERIODS
LIST OF EQUIPMENTS
(for a batch of 30 students)
Sl.No
Equipments Qty Experiments No.
1 Piston Engines 1 1,2,3,4,5
2 Jet Aero Engines 1 6,7,8,9,10
3 Standard tools for dismantling and assembly 2 sets 1,5,6,10
4
Precision instruments (Vernier Caliper,
Micro meter, Cylinder bore gauge, depth
gauge, Bevel Protector and DTI
2 sets 3,5,8
5 NDT Equipment 1 set 2,8
8
AE2356 AIRCRAFT DESIGN PROJECT – I L T P C
0 0 3 2
OBJECTIVE
To introduce and develop the basic concept of aircraft design.
Each student is assigned the design of an Airplane (or Helicopter or any other flight
vehicle), for given preliminary specifications. The following are the assignments to be
carried out:
EXPERIMENTS
1. Comparative configuration study of different types of airplanes
2. Comparative study on specification and performance details of aircraft
3. Preparation of comparative data sheets
4. Work sheet layout procedures
5. Comparative graphs preparation and selection of main parameters for the design
6. Preliminary weight estimations, selection of main parameters,
7. Power plant selection, Aerofoil selection, Wing tail and control surfaces
8. Preparation of layouts of balance diagram and three view drawings
9. Drag estimation
10. Detailed performance calculations and stability estimates
TOTAL: 60 PERIODS
LIST OF EQUIPMENTS
(for a batch of 30 students)
Sl.No. Name of the Equipment Quantity
1 Engineering Drawing Board 30
2 Engineering Drawing Instruments 30
3. Computers with suitable software 30
AE2357 AIRFRAME LABORATORY L T P C
0 0 3 2
OBJECTIVE
To give training on riveting, patchwork, welding and carpentry
LIST OF EXPERIMENTS
Aircraft wood gluing-single scarf joint
Aircraft wood gluing-double scarf joint
Study on MIG, TIG & PLASMA welding of aircraft components
Welded single & double V-joints.
Fabric Patch repair
Riveted patch repairs.
Tube bending and flaring
Sheet metal forming.
Preparation of glass epoxy of composite laminates and specimens.
Determination of elastic constants of composite specimens.
TOTAL: 45 PERIODS
9
LIST OF EQUIPMENT
(for a batch of 30 students)
Sl.No. Name of the Equipment Quantity Experiment
No.
1 Shear cutter pedestal type 1 4,6
2 Drilling Machine 1 4,5,6
3 Bench Vices 1 1, 2, 6, 7, 8
4 Radius Bend bars 1 7
5 Pipe Flaring Tools 1 7
6 Welding machine 1 4
7 Glass fibre, epoxy resin 1 9
8 Strain gauges and strain indicator 1 10

No comments:

Post a Comment