Skip to main content

MATHEMATICS – III SYLLABUSELECTROMAGNETIC FIELDS Second year EEE Syllabus For JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD STUDENTS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech EEE I-Sem

ELECTROMAGNETIC FIELDS

Objective :
The objective of this course is to introduce the concepts of electric field and magnetic fields and their applications which will be utilized in the development of the theory for power transmission lines and electrical machines.


UNIT – I Electrostatics :

Electrostatic Fields – Coulomb’s Law – Electric Field Intensity (EFI) – EFI due to a line and a surface charge – Work done in moving a point charge in an electrostatic field –
Electric Potential – Properties of potential function – Potential gradient – Guass’s law – Application of Guass’s Law – Maxwell’s first law, div ( D )=v

UNIT – II Conductors and Dipole:

Laplace’s and Poison’s equations – Solution of Laplace’s equation in one variable. Electric dipole – Dipole moment – potential and EFI due to an electric dipole – Torque on an Electric dipole in an electric field – Behavior of conductors in an electric field – Conductors and Insulators.

UNIT – III Dielectric & Capacitance :

Electric field inside a dielectric material – polarization – Dielectric – Conductor and Dielectric – Dielectric boundary conditions, Capacitance – Capacitance of parallel plate and spherical and co-axial capacitors with composite dielectrics – Energy stored and energy density in a static electric field – Current density – conduction and Convection current densities – Ohm’s law in point form – Equation of continuity

UNIT – IV Magneto Statics :

Static magnetic fields – Biot-Savart’s law – Oesterd’s experiment - Magnetic field intensity (MFI) – MFI due to a straight current carrying filament – MFI due to circular, square and solenoid current – Carrying wire – Relation between magnetic flux, magnetic flux density and MFI – Maxwell’s second Equation, div(B)=0.

UNIT – V Ampere’s circuital law and its applications

Ampere’s circuital law and its applications viz. MFI due to an infinite sheet of current and a long current carrying filament – Point form of Ampere’s circuital law – Maxwell’s third equation, Curl (H)=Jc, Field due to a circular loop, rectangular and square loops.

UNIT – VI Force in Magnetic fields :

Magnetic force - Moving charges in a Magnetic field – Lorentz force equation – force on a current element in a magnetic field – Force on a straight and a long current carrying conductor in a magnetic field – Force between two straight long and parallel current carrying conductors – Magnetic dipole and dipole moment – a differential current loop as a magnetic dipole – Torque on a current loop placed in a magnetic field

UNIT – VII Magnetic Potential :

Scalar Magnetic potential and its limitations – vector magnetic potential and its properties – vector magnetic potential due to simple configurations – vector Poisson’s equations.

Self and Mutual inductance – Neumans’s formulae – determination of self-inductance of a solenoid and toroid and mutual inductance between a straight long wire and a square loop wire in the same plane – energy stored and density in a magnetic field. Introduction to permanent magnets, their characteristics and applications.

UNIT – VIII Time Varying Fields :

Time varying fields – Faraday’s laws of electromagnetic induction – Its integral and point forms – Maxwell’s fourth equation, Curl (E)=-B/t – Statically and Dynamically induced EMFs – Simple problems -Modification of Maxwell’s equations for time varying fields – Displacement current – Poynting Theorem and Poynting vector.

TEXT BOOKS

1. “Engineering Electromagnetics” by William H. Hayt & John. A. Buck Mc. Graw-Hill Companies, 7th Editon.2006.

2. “Electro magnetic Fields” by Sadiku, Oxford Publications

REFERENCE BOOKS :

1. “Introduction to Electro Dynamics” by D J Griffiths, Prentice-Hall of India Pvt.Ltd, 2nd editon

2. “Electromagnetics” by J P Tewari.

3. “Electromagnetics” by J. D Kraus Mc Graw-Hill Inc. 4th edition 1992.

4. “Electromagnetic fields”, by S. Kamakshaiah, Right Publishers, 2007.

Comments

Popular posts from this blog

PROBABILITY AND STATISTICS previous question paper for JNTU university 2nd year first semester students Dept: CSE,IT,CSSE

PROBABILITY AND STATISTICS previous question paper for JNTU university 2nd year first semester students Dept: CSE,IT,CSSE PROBABILITY AND STATISTICS previous question paper for JNTU university 2nd year first semester students Dept: CSE,IT,CSSE II B.Tech I Semester Regular Examinations, November 2007 PROBABILITY AND STATISTICS ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks ⋆ ⋆ ⋆ ⋆ ⋆ 1. (a) If A and B are events with P(A) = 1/3, P(B) = 1/4, and P(A U B) = 1/2, find i. P(A/B) ii. P(A \Bc ) (b) Three students A,B,C are in a running race. A and B have the same probability of wining and each is twice as likely to win as C. Find the probability that B or C wins. (c) The students in a class are selected at random one after the other for an examination. Find the probability that the boys and girls are alternate if there are i....

jntu previous year question paper MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS for 2nd year first semester CE and MMT department

jntu previous year question paper MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS  for 2nd year first semester  Mechanical Engineering,Electronics and Communication Engineering,Computer Science Engineering,Information Technology,Electronics and Telematics,Computer Science and Systems Engineering,Electronics and Computer Engineering,Production Engineering,Instrumentation and Control Engineering and Automobile Engineering jntu previous year question paper MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS  for 2nd year first semester  Mechanical Engineering,Electronics and Communication Engineering,Computer Science Engineering,Information Technology,Electronics and Telematics,Computer Science and Systems Engineering,Electronics and Computer Engineering,Production Engineering,Instrumentation and Control Engineering and Automobile Engineering III B.Tech I Semester Regular Examinations, November 2007 MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS (Common to Mechanical Engineering,Ele...

CHEMICAL REACTION ENGINEERING-I JNTU UNIVERSITY PREVIOUS YEAR QUESTION PAPER COLLECTION 3rd year first semester Chemical Engineering department

CHEMICAL REACTION ENGINEERING-I JNTU UNIVERSITY PREVIOUS YEAR QUESTION PAPER COLLECTION 3rd year first semester Chemical Engineering department CHEMICAL REACTION ENGINEERING-I JNTU UNIVERSITY PREVIOUS YEAR QUESTION PAPER COLLECTION 3rd year first semester Chemical Engineering department III B.Tech I Semester Regular Examinations, November 2007 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks ⋆ ⋆ ⋆ ⋆ ⋆ 1. The activation energy for the decomposition of N2O5 is 24630 cal/g mole (103 kJ/mole). (a) What will be the ratio of their rates at 00C and 250C (the rate being measured at the same concentration of reactant)? (b) If the rate constant of the reaction at 250C is 0.002 min−1 calculate the rate constant for the reaction at 500C [8+8] 2. A constant density first order reaction A ! P is carried out in a batch reactor. Data obtained are given as: Time(sec) 30 60 90 120 150 180 600 Concentr...