Sunday, September 11, 2011

B.E. AERONAUTICAL ENGINEERING ANNA UNIVERSITY SYLLABUS REGULATION 2008 FOR LIST OF ELECTIVES



LIST OF ELECTIVES SUBJECTS FOR B.E. AERONAUTICAL ENGINEERING



LIST OF ELECTIVES SUBJECTS FOR B.E. AERONAUTICAL ENGINEERING


THEORY


AE2451 Composite Materials And Structures
Elective – IV
Elective – V
PRACTICAL
AE2452 Comprehension And Technical Seminar 0 0 3 2
AE2453 Project Work 0 0 12 6
TOTAL 9 0 15 17
LIST OF ELECTIVE COURSES
Elective – I
Code No. Course Title L T P C
AE2021 Theory of Elasticity
AE2022 Aircraft General Engineering And Maintenance
Practices
AE2023 Space Mechanics
AE2024 Heat Transfer
Electives– II & III
Code No. Course Title L T P C
AE2025 Helicopter Theory
AE2026 Industrial Aerodynamics
AE2027 Airframe Maintenance and Repair
AE2028 Aero Engine Maintenance and Repair
AE2029 Theory of Plates and Shells
AE2030 Fatigue And Fracture
Electives – IV & V
Code No. Course Title L T P C
AE2031 Hypersonic Aerodynamics
AE2032 Experimental Aerodynamics
AE2033 Rockets and Missiles
AE2034 Structural Dynamics
AE2035 Air Traffic Control and Planning
AE2036 Production Planning And Control
AE2037 Engine Systems And Controls
3


TOTAL 18 0 9 25




















AE2021 THEORY OF ELASTICITY L T P C


OBJECTIVE
To understand the theoretical concepts of material behaviour with particular emphasis
on their elastic property
UNIT I ASSUMPTIONS IN ELASTICITY 4
Definitions- notations and sign conventions for stress and strain, Equations of
equilibrium.
UNIT II BASIC EQUATIONS OF ELASTICITY 15
Strain – displacement relations, Stress – strain relations, Lame’s constant – cubical
dilation, Compressibility of material, bulk modulus, Shear modulus, Compatibility
equations for stresses and strains, Principal stresses and principal strains, Mohr’s circle,
Saint Venant’s principle.
UNIT III PLANE STRESS AND PLANE STRAIN PROBLEMS 8
Airy’s stress function, Bi-harmonic equations, Polynomial solutions, Simple twodimensional
problems in Cartesian coordinates like bending of cantilever and simply
supported beams, etc.
UNIT IV POLAR COORDINATES 10
Equations of equilibrium, Strain displacement relations, Stress – strain relations, Axi –
symmetric problems, Kirsch, Michell’s and Boussinesque problems.
UNIT V TORSION 8
Navier’s theory, St. Venant’s theory, Prandtl’s theory on torsion, The semi- inverse
method and applications to shafts of circular, elliptical, equilateral triangular and
rectangular sections.
TOTAL: 45 PERIODS
TEXT BOOK
1. Timoshenko, S., and Goodier, T.N., “Theory of Elasticity”, McGraw–Hill Ltd., Tokyo,
1990.
18
REFERENCES
1. Enrico Volterra & J.H. Caines, “Advanced Strength of Materials”, Prentice Hall New
Jersey, 1991.
2. Wng, C.T., “Applied Elasticity”, McGraw–Hill Co., New York, 1993.
3. Sokolnikoff, I.S., “Mathematical Theory of Elasticity”, McGraw–Hill New York, 1978.
AE2022 AIRCRAFT GENERAL ENGINEERING AND L T P C
MAINTENANCE PRACTICES
OBJECTIVE
To teach the students about the basic concepts of aircraft general engineering and
maintenance practices.
UNIT I AIRCRAFT GROUND HANDLING AND SUPPORT EQUIPMENT 10
Mooring, jacking, leveling and towing operations – Preparation – Equipment –
precautions – Engine starting procedures – Piston engine, turboprops and turbojets –
Engine fire extinguishing – Ground power unit.
UNIT II GROUND SERVICING OF VARIOUS SUB SYSTEMS 8
Air conditioning and pressurization – Oxygen and oil systems – Ground units and their
maintenance.
UNIT III MAINTENANCE OF SAFETY 5
Shop safety – Environmental cleanliness – Precautions
UNIT IV INSPECTION 10
Process – Purpose – Types – Inspection intervals – Techniques – Checklist – Special
inspection – Publications, bulletins, various manuals – FAR Air worthiness directives –
Type certificate Data sheets – ATA Specifications
UNIT V AIRCRAFT HARDWARE, MATERIALS, SYSTEM PROCESSES 12
Hand tools – Precision instruments – Special tools and equipments in an airplane
maintenance shop – Identifiation terminology – Specification and correct use of various
aircraft hardware (i.e. nuts, bolts, rivets, screws etc) – American and British systems of
specifications – Threads, gears, bearings, etc – Drills, tapes and reamers – Identification
of all types of fluid line fittings. Materials, metallic and non-metallic = Plumbing
connectors – Cables – Swaging procedures, tests, Advantages of swaging over splicing.
TOTAL: 45 PERIODS
TEXT BOOK
1. Kroes Watkins Delp, Aircraft Maintenance and Repair, McGraw Hill, New York, 1993.
REFERENCES:
1. A&P Mechanics, Aircraft Hand Book, F A A Himalayan Book House, New Delhi,
1996
2. A&P Mechanics, General Hand Book, F A A Himalayan Bok House, New Delhi, 1996
19
AE2023 SPACE MECHANICS L T P C


OBJECTIVE
To study the basic concepts of orbital Mechanics with particular emphasis on
interplanetary trajectories
UNIT I BASIC CONCEPTS 4
The Solar System – References Frames and Coordinate Systems – The Celestial
Sphere – The Ecliptic – Motion of Vernal Equinox – Sidereal Time – Solar Time –
Standard Time – The Earth’s Atmosphere.
UNIT II THE GENERAL N-BODY PROBLEM 10
The many body Problem – Lagrange – Jacobian Identity –The Circular Restricted Three
Body Problem – Libration Points- Relative Motion in the N-body Problem –Two –Body
Problem – Satellite Orbits – Relations Between Position and Time – Orbital Elements.
UNIT III SATELLITE INJECTION AND SATELLITE ORBIT PERTURBATIONS 12
General Aspects of satellite Injections – Satellite Orbit Transfer –Various Cases – Orbit
Deviations Due to Injection Errors – Special and General Perturbations – Cowell’s
Method – Encke’s Method – Method of vibrations of Orbital Elements – General
Perturbations Approach.
UNIT IV INTERPLANETARY TRAJECTORIES 6
Two Dimensional Interplanetary Trajectories –Fast Interplanetary Trajectories – Three
Dimensional Interplanetary Trajectories – Launch if Interplanetary Spacecraft –
Trajectory about the Target Planet.
UNIT V BALLISTIC MISSILE TRAJECTORIES AND MATERIALS 13
The Boost Phase – The Ballistic Phase –Trajectory Geometry- Optimal Flights – Time of
Flight – Re – entry Phase – The Position of the Impact Point – Influence Coefficients.
Space Environment – Peculiarities – Effect of Space Environment on the Selection of
Spacecraft Material.
TOTAL: 45 PERIODS
TEXT BOOK
1. Cornelisse, J.W., “Rocket Propulsion and Space Dynamic”, W.H. Freeman & Co.,
1984.
REFERENCES
1. Sutton, G.P., “Rocket Propulsion Elements”, John Wiley, 1993.
2. Van de Kamp, P., “Elements of Astro-mechanics”, Pitman, 1979.
3. Parker E.R., “Materials for Missiles and Spacecraft”, McGraw-Hill Book Co. Inc.,1982.
AE2024 HEAT TRANSFER L T P C


OBJECTIVE
To introduce the concepts of heat transfer to enable the students to design components
subjected to thermal loading.
20
UNIT I HEAT CONDUCTION 11
Basic Modes of Heat Transfer – One dimensional steady state heat conduction:
Composite Medium – Critical thickness – Effect of variation of thermal Conductivity –
Extended Surfaces – Unsteady state.
Heat Conduction: Lumped System Analysis – Heat Transfer in Semi infinite and infinite
solids – Use of Transient – Temperature charts – Application of numerical techniques.
UNIT II CONVECTIVE HEAT TRANSFER 10
Introduction – Free convection in atmosphere free convection on a vertical flat plate –
Empirical relation in free convection – Forced convection – Laminar and turbulent
convective heat transfer analysis in flows between parallel plates, over a flat plate and in
a circular pipe. Empirical relations, application of numerical techniques in problem
solving.
UNIT III RADIATIVE HEAT TRANSFER 8
Introduction to Physical mechanism – Radiation properties – Radiation shape factors –
Heat exchange between non – black bodies – Radiation shields.
UNIT IV HEAT EXCHANGERS 8
Classification – Temperature Distribution – Overall heat transfer coefficient, Heat
Exchange Analysis – LMTD Method and E-NTU Method.
UNIT V HEAT TRANSFER PROBLEMS IN AEROSPACE ENGINEERING 8
High-Speed flow Heat Transfer, Heat Transfer problems in gas turbine combustion
chambers – Rocket thrust chambers – Aerodynamic heating – Ablative heat transfer.
TOTAL: 45 PERIODS
TEXT BOOKS
1. Yunus A. Cengel., “Heat Transfer – A practical approach”, Second Edition, Tata
McGraw-Hill, 2002.
2. Incropera. F.P.and Dewitt.D.P. “ Introduction to Heat Transfer”, John Wiley and Sons
– 2002.
REFERENCES
1. Lienhard, J.H., “A Heat Transfer Text Book”, Prentice Hall Inc., 1981.
2. Holman, J.P. “Heat Transfer”, McGraw-Hill Book Co., Inc., New York, 6th Edn., 1991.
3. Sachdeva, S.C., “Fundamentals of Engineering Heat & Mass Transfer”, Wiley
Eastern Ltd., New Delhi, 1981.
4. Mathur, M. and Sharma, R.P. “Gas Turbine and Jet and Rocket Propulsion”,
Standard Publishers, New Delhi 1988.
AE2025 HELICOPTER THEORY L T P C


OBJECTIVE:
To present the basic ideas of evolution, performance and associated stability problems
of helicopter.
UNIT I DEVELOPMENT OF ROTATING WING AIRCRAFT 6
Evolution of helicopter-Helicopter configurations-rotor arrangements-compound
Helicopter - jet rotor-no tail rotor concepts
UNIT II DYNAMICS OF HOVERING FLIGHT 12
Actuator disc theory-Blade Element Theory-ideal twist Induced & profile power-Figure of
merit-Thrust and power coefficients-calculation of drag, torque, power-Ground effect in
hover- Estimation of hover ceiling.
21
UNIT III DYNAMICS OF FORWARD FLIGHT 10
Forward flight performance-Parasite drag and Power-Stall limitations-flapping-cyclic
Pitch - Autorotation in hover and in forward flight-Dead man’s curve.
UNIT IV CLIMB AND DESCENT PERFORMANCE 9
Vertical flight-flow patterns surrounding the rotor-Power required in climb and descent-
Descent speed calculations-Take-off techniques.
UNIT V HELICOPTER STABILITY AND CONTROL 8
Trim-Static stability-dynamic stability-Pilot’s control-Rotor control-Flight control systems
and stability argumentation-Flying qualities.
TOTAL: 45 PERIODS
TEXT BOOK:
1. Gessow A & Myers G.C “Aerodynamics of Helicopter” Mac Millan & Co, 1987
REFERENCES:
1. Gupta. L “Helicopter Engineering”, Himalayan Books, 1996
2. Saunders “Dynamics of Helicopter flight”, John Wiley, 1975
3. Newman. S “Foundation of Helicopter Flight” Halsted Press, 1994
4. Seddon. J “Basic Helicopter Aerodynamics” AIAA education series, 1990.
AE2026 INDUSTRIAL AERODYNAMICS L T P C


OBJECTIVE:
To familiarize the learner with non-aeronautical uses of aerodynamics such as road
vehicle, building aerodynamics and problems of flow induced vibrations.
UNIT I ATMOSPHERIC BOUNDARY LAYER 8
Atmospheric circulation-Local winds-Terrain types-Mean velocity profiles-Power law and
logarithm law- wind speeds-Turbulence profiles-Roughness parameters-simulation
techniques in wind tunnels
UNIT II BLUFF BODY AERODYNAMICS 10
Boundary layers and separation-Two dimensional wake and vortex formation-Strouhal
and Reynolds numbers-Separation and reattachments-Power requirements and drag
coefficients of automobiles-Effects of cut back angle-aerodynamics of trains.
UNIT III WIND ENERGY COLLECTORS 9
Horizontal and vertical axis machines-energy density of different rotors-Power
coefficient-Betz coefficient by momentum theory.
UNIT IV BUILDING AERODYNAMICS 8
Pressure distribution on low rise buildings-wind forces on buildings-Environmental winds
in city blocks-special problems of tall buildings-building codes-ventilation and
architectural aerodynamics
22
UNIT V FLOW INDUCED VIBRATIONS 10
Vortex shedding, lock & effects of Reynolds number on wake formation in turbulent flows
- across wind galloping-wake galloping-along wind galloping of circular cables-oscillation
of tall structures and launch vehicles under wind loads-stall flutter.
TOTAL: 45 PEERIODS
REFERENCES:
1. Scorer R.S “Environmental Aerodynamics”, Ellis Harwood Ltd, England, 1978
2. Sovran, M(ed) “Aerodynamic drag mechanism of bluff bodies and road vehicles”,
Plenum Press, N.Y, 1978
3. Sachs P “Wind Forces in Engineering”, Pergamon Press, 1988
4. Blevins R.D “Flow Induced Vibrations”, Van Nostrand, 1990
5. Calvert N.G “Wind Power Principles”, Charles Griffin & Co London, 1979
AE2027 AIRFRAME MAINTENANCE AND REPAIR L T P C


OBJECTIVE
To study the maintenance aspect of airframe systems and rectification of snags
UNIT I WELDING IN AIRCRAFT STRUCTURAL COMPONENTS 10
Equipments used in welding shop and their maintenance – Ensuring quality welds –
Welding jigs and fixtures – Soldering and brazing.
SHEET METAL REPAIR AND MAINTENANCE
Inspection of damage – Classification – Repair or replacement – Sheet metal inspection
– N.D.T. Testing – Riveted repair design, Damage investigation – reverse technology.
UNIT II PLASTICS AND COMPOSITES IN AIRCRAFT 10
Review of types of plastics used in airplanes – Maintenance and repair of plastic
components – Repair of cracks, holes etc., various repair schemes – Scopes.Inspection
and Repair of composite components – Special precautions – Autoclaves.
UNIT III AIRCRAFT JACKING, ASSEMBLY AND RIGGING 8
Airplane jacking and weighing and C.G. Location. Balancing of control surfaces –
Inspection maintenance. Helicopter flight controls. Tracking and balancing of main rotor.
UNIT IV REVIEW OF HYDRAULIC AND PNEUMATIC SYSTEM 10
Trouble shooting and maintenance practices – Service and inspection. – Inspection and
maintenance of landing gear systems. – Inspection and maintenance of air-conditioning
and pressurisation system, water and waste system. Installation and maintenance of
Instruments – handling – Testing – Inspection. Inspection and maintenance of auxiliary
systems – Fire protection systems – Ice protection system – Rain removal system –
Position and warning system – Auxiliary Power Units (APUs)
UNIT V SAFETY PRACTICES 7
Hazardous materials storage and handling, Aircraft furnishing practices – Equipments.
Trouble shooting - Theory and practices.
TOTAL: 45 PERIODS
TEXT BOOK
1. KROES, WATKINS, DELP, “Aircraft Maintenance and Repair”, McGraw-Hill, New
York, 1992.
23
REFERENCES
1. LARRY REITHMEIR, “Aircraft Repair Manual”, Palamar Books, Marquette, 1992.
2. BRIMM D.J. BOGGES H.E., “Aircraft Maintenance”, Pitman Publishing corp. New
York, 1940
AE2028 AERO ENGINE MAINTENANCE AND REPAIR L T P C


OBJECTIVE
To study the basic concepts of the maintenance and repair of both piston and jet aero
engines and the procedures followed for overhaul of aero engines.
UNIT I CLASSIFICATION OF PISTON ENGINE COMPONENTS 5
Types of piston engines – Principles of operation – Function of components – Materials
used – Details of starting the engines – Details of carburetion and injection systems for
small and large engines – Ignition system components – Spark plug details – Engine
operating conditions at various altitudes – Maintenance and inspection check to be
carried out.
UNIT II INSPECTIONS OF PISTON ENGINES 8
Inspection and maintenance and trouble shooting – Inspection of all engine components
– Daily and routine checks – Overhaul procedures – Compression testing of cylinders –
Special inspection schedules – Engine fuel, control and exhaust systems – Engine
mount and super charger – Checks and inspection procedures.
UNIT III OVERHAULING OF PISTON ENGINES 10
Symptoms of failure – Fault diagnostics – Case studies of different engine systems – l:
Tools and equipment requirements for various checks and alignment during overhauling
– Tools for inspection – Tools for safety and for visual inspection – Methods and
instruments for non destructive testing techniques – Equipment for replacement of part
and their repair. Engine testing: Engine testing procedures and schedule preparation –
Online maintenance.
UNIT IV CLASSIFICATION OF JET ENGINE COMPONENTS 12
12 Types of jet engines – Principles of operation – Functions of components – Materials
used – Details of starting and operating procedures – Gas turbine engine inspection &
checks – Use of instruments for online maintenance – Special inspection procedures :
Foreign Object Damage – Blade damage – etc.
Maintenance procedures of gas turbine engines – Trouble shooting and rectification
procedures – Component maintenance procedures – Systems maintenance procedures.
Gas turbine testing procedures – test schedule preparation – Storage of Engines –
Preservation and de-preservation procedures.
UNIT V OVERHAUL PROCEDURES 10
Engine Overhaul procedures – Inspections and cleaning of components – Repairs
schedules for overhaul – Balancing of Gas turbine components.
Trouble Shooting - Procedures for rectification – Condition monitoring of the engine on
ground and at altitude – engine health monitoring and corrective methods.
TOTAL: 45 PERIODS
24
TEXT BOOK
1. KROES & WILD, “Aircraft Power plants”, 7th Edition – McGraw Hill, New York, 1994.
REFERENCES
1. TURBOMECA, “Gas Turbine Engines”, The English Book Store, New Delhi, 1993.
2. UNITED TECHNOLOGIES PRATT & WHITNEY, “The Aircraft Gas turbine Engine
and its Operation”, (latest edition) The English Book Store, New Delhi.
AE2029 THEORY OF PLATES AND SHELLS L T P C


OBJECTIVE
To study the behaviour of the plates and shells with different geometry under various
types of loads.
UNIT I CLASSICAL PLATE THEORY 3
Classical Plate Theory – Assumptions – Differential Equation – Boundary Conditions.
UNIT II PLATES OF VARIOUS SHADES 15
Navier’s Method of Solution for Simply Supported Rectangular Plates – Leavy’s Method
of Solution for Rectangular Plates under Different Boundary Conditions. Governing
Equation – Solution for Axi-symmetric loading – Annular Plates – Plates of other shapes.
UNIT III EIGEN VALUE ANALYSIS 8
Stability and free Vibration Analysis of Rectangular Plates.
UNIT IV APPROXIMATE METHODS 10
Rayleigh – Ritz, Galerkin Methods– Finite Difference Method – Application to
Rectangular Plates for Static, Free Vibration and Stability Analysis.
UNIT V SHELLS 9
Basic Concepts of Shell Type of Structures – Membrane and Bending Theories for
Circular Cylindrical Shells.
TOTAL: 45 PERIODS
TEXT BOOK
1. Timoshenko, S.P. Winowsky. S., and Kreger, “Theory of Plates and Shells”,
McGraw-Hill Book Co. 1990.
2. T. K. Varadan and K. Bhaskar, “Theory of Plates and Shells”,1999, Narosa .
REFERENCES
1. Flugge, W. “Stresses in Shells”, Springer – Verlag, 1985.
2. Timoshenko, S.P. and Gere, J.M., “Theory of Elastic Stability”, McGraw-Hill Book Co.
1986
25
AE2032 EXPERIMENTAL AERODYNAMICS L T P C


OBJECTIVES:
To present the measurement techniques involved in aerodynamic testing.
UNIT I WIND TUNNEL TESTING 8
Low speed wind tunnels-estimation of energy ratio and power required supersonic win
tunnels-calculation of running time and storage tank requirements.
UNIT II EXPERIMENTS IN SUBSONIC WIND TUNNELS 10
Estimation of flow angularity and turbulence factor-calculation of CL and CD on aero foils
from pressure distribution- CD from wake survey-Test section average velocity using
traversing rakes-span wise load distribution for different taper ratios of wing
UNIT III EXPERIMENTS IN HIGH SPEED TUNNELS 10
Mach number estimation in test section by pressure measurement and using a wedge –
preliminary estimates of blowing and running pressures, nozzle area ratios, mass flow
for a given test section size and Mach number-starting problem and starting loads.
UNIT IV MEASUREMENT TECHNIQUES 9
Hot wire anemometer and laser Doppler anemometer for turbulence and velocity
measurements-Use of thermocouples and pyrometers for measurement of static and
total temperatures-Use of pressure transducers, Rotameters and ultrasonic flow meters.
UNIT V SPECIAL PROBLEMS 8
Pitot-static tube correction for subsonic and supersonic Mach numbers-boundary layer
velocity profile on a flat plate by momentum-integral method -Calculation of CD from wall
shear stress-Heating requirements in hypersonic wind tunnels-Re-entry problems.
TOTAL: 45 PERIODS
REFERENCES:
1. Rae W.H and Pope. A “Low speed wind tunnel testing” John Wiley Publication, 1984
2. Pope. A and Goin. L “High speed wind tunnel testing” John Wiley, 1985
3. Rathakrishnan. E “Instrumentation, Measurement and Experiments in Fluids”, CRC
Press, London, 2007
AE2031 HYPERSONIC AERODYNAMICS L T P C


OBJECTIVE:
To present the basic ideas of hypersonic flow and the associated problem areas.
UNIT I FUNDAMENTALS OF HYPERSONIC AERODYNAMICS 9
Introduction to hypersonic aerodynamics-differences between hypersonic aerodynamics
and supersonic aerodynamics-concept of thin shock layers-hypersonic flight pathshypersonic
similarity parameters-shock wave and expansion wave relations of in viscid
hypersonic flows.
UNIT II SIMPLE SOLUTION METHODS FOR HYPERSONIC
IN VISCID FLOWS 9
Local surface inclination methods-Newtonian theory-modified Newtonian law-tangent
wedge and tangent cone and shock expansion methods-approximate theory-thin shock
layer theory.
26
UNIT III VISCOUS HYPERSONIC FLOW THEORY 9
Boundary layer equation for hypersonic flow-hypersonic boundary layers-self similar and
non self similar boundary layers-solution methods for non self similar boundary layersaerodynamic
heating.
UNIT IV VISCOUS INTERACTIONS IN HYPERSONIC FLOWS 9
Introduction to the concept of viscous interaction in hypersonic flows-strong and weak
viscous interactions-hypersonic viscous interaction similarity parameter-introduction to
shock wave boundary layer interactions.
UNIT V INTRODUCTION TO HIGH TEMPERATURE EFFECTS 9
Nature of high temperature flows-chemical effects in air-real and perfect gases-Gibb’s
free energy and entropy-chemically reacting mixtures-recombination and dissociation.
TOTAL: 45 PERIODS
TEXT BOOKS:
1. John. D. Anderson. Jr., “Hypersonic and High Temperature Gas Dyanmics”, Mc.
Graw hill Series, New York, 1996.
REFERENCES:
1. John. D. Anderson. Jr ., “Modern compressible flow with historical perspective”, Mc.
Graw Hill Publishing Company, New York, 1996.\
2. John. T Bertin, “Hypersonic Aerothermodynamics”, published by AIAA Inc.,
Washington. D.C., 1994.
AE2033 ROCKETS AND MISSILES L T P C


OBJECTIVE
To introduce basic concepts of design and trajectory estimation of rocket and missiles
UNIT I ROCKET MOTION IN FREE SPACE AND GRAVITATIONAL FIELD 10
One Dimensional and Two Dimensional rocket Motions in Free Space and
Homogeneous Gravitational Fields – description of Vertical, Inclined and Gravity Turn
Trajectories – Determination of range and Altitude Simple Approximations to Burnout
Velocity.
UNIT II STAGING AND CONTROL OF ROCKETS AND MISSILES 10
Multistaging of rockets – Vehicle Optimization – Stage Separation Dynamics –
Separation Techniques. Rocket Thrust Vector Control Methods.
UNIT III AERODYNAMICS OF ROCKETS AND MISSILES 10
Airframe Components of Rockets and Missiles – Forces Acting on a Missile While
Passing Through Atmosphere – Classification of Missiles – methods of Describing
Aerodynamic Forces and Moments – Lateral Aerodynamic Moment – Lateral Damping
Moment and Longitudinal Moment of a Rocket – lift and Drag Forces – Drag Estimation.
UNIT IV ROCKET PROPULSION SYSTEMS 10
Ignition System in rockets – types of Igniters – Igniter Design Considerations – Design
Consideration of liquid Rocket Combustion Chamber, Injector Propellant Feed Lines,
Valves, Propellant Tanks Outlet and Helium Pressurized and Turbine feed Systems –
Propellant Slash and Propellant Hammer – Elimination of Geysering Effect in Missiles –
Combustion System of Solid Rockets.
27
UNIT V MATERIALS FOR ROCKETS AND MISSILES 5
Selection of Materials – Special Requirements of Materials to Perform under Adverse
Conditions.
TOTAL: 45 PERIODS
TEXT BOOKS
1. Sutton, G.P., et al., “Rocket Propulsion Elements”, John Wiley & Sons Inc., New
York, 1993.
REFERENCES
1. Mathur, M., and Sharma, R.P., “Gas Turbines and Jet and Rocket Propulsion”,
Standard Publishers, New Delhi 1998.
2. Cornelisse, J.W., “Rocket Propulsion and Space Dynamics”, J.W., Freeman & Co.
Ltd., London, 1982.
3. Parker, E.R., “Materials for Missiles and Spacecraft”, McGraw-Hill Book Co. Inc.,
1982.
AE2030 FATIGUE AND FRACTURE L T P C


OBJECTIVE
To study the concepts of estimation of the endurance and failure mechanism of
components
UNIT I FATIGUE OF STRUCTURES 8
S.N. curves - Endurance limits - Effect of mean stress, Goodman, Gerber and Soderberg
relations and diagrams - Notches and stress concentrations - Neuber’s stress
concentration factors - Plastic stress concentration factors - Notched S.N. curves.
UNIT II STATISTICAL ASPECTS OF FATIGUE BEHAVIOUR 9
Low cycle and high cycle fatigue - Coffin - Manson’s relation - Transition life - cyclic
strain hardening and softening - Analysis of load histories - Cycle counting techniques -
Cumulative damage - Miner’s theory - Other theories.
UNIT III PHYSICAL ASPECTS OF FATIGUE AND FRACTURE 12
Phase in fatigue life - Crack initiation - Crack growth - Final Fracture - Dislocations -
fatigue fracture surfaces - Strength and stress analysis of cracked bodies - Potential
energy and surface energy - Griffith’s theory - Irwin - Orwin extension of Griffith’s theory
to ductile materials - Effect of thickness on fracture toughness - stress intensity factors
for typical geometries.
UNIT IV FATIGUE DESIGN ANDTESTINIG 8
Safe life and Fail-safe design philosophies - Importance of Fracture Mechanics in
aerospace structures - Application to composite materials and structures.
UNIT V FUNDAMENTALS OF FAILURE ANALYSIS 8
Common causes of failure. Principles of failure analysis. Fracture mechanics approach
to failure problems. Techniques of failure analysis. Service failure mechanisms - ductile
and brittle fracture, fatigue fracture, wear failures, fretting failures, environment induced
failures, high temp. failure. Faulty heat treatment and design failures, processing failures
(forging, casting, machining etc.),
TOTAL: 45 PERIODS
28
TEXT BOOKS
1. Prasanth Kumar – “Elements of fracture mechanics” – Wheeter publication, 1999.
2. Barrois W, Ripely, E.L., “Fatigue of aircraft structure”, Pe/gamon press. Oxford, 1983.
REFERENCES
1. Sin, C.G., “Mechanics of fracture” Vol. I, Sijthoff and w Noordhoff International
Publishing Co., Netherlands, 1989.
2. Knott, J.F., “Fundamentals of Fracture Mechanics”, Buterworth & Co., Ltd., London,
1983
3. Subra suresh, “Fatigue of materials” , II edition, 1998.
4. T. L. Anderson, “Fracture mechanics: Fundamentals and applications”, III edition,
2004.
AE2034 STRUCTURAL DYNAMICS L T P C


UNIT I FORCE DEFLECTION PROPERTIES OF STRUCTURES 9
Constraints and Generalized coordinates-Virtual work and generalized forces-Force-
Deflection influence functions-stiffness and flexibility methods.
UNIT II PRINCIPLES OF DYNAMICS 9
Free and forced vibrations of systems with finite degrees of freedom-Damped
oscillations-D” Alembert’s principle-Hamilton’s principle-Lagrangean equations of motion
and applications.
UNIT III NATURAL MODES OF VIBRATION 9
Equation of motion for free vibrations solution of Eigen value problems-Normal
coordinates and orthogonality relations.
UNIT IV ENERGY METHODS 9
Rayleigh’s principle-Rayleigh-Ritz method-Coupled natural modes-Effect of rotary inertia
and shear on lateral vibrations of beams-Natural vibrations of plates.
UNIT V APPROXIMATE METHODS 9
Approximate methods of evaluating the Eigen frequencies and the dynamics response of
continuous systems-Matrix methods of dynamic stress analysis.
TOTAL: 45 PERIODS
TEXT BOOKS:
1. F. S. Tse, I. E. Morse and H. T. Hinkle, “Mechanical Vibration”, Prentice Hall of India
Pvt. Ltd, New Delhi, 1988.
2. W. C. Hurty and M. F. Rubinstein, “Dynamics of Structures”, Prentice Hall of India
Pvt. Ltd, New Delhi, 1987.
REFERENCES:
1. R. K. Vierck, “Vibration Analysis” 2nd Edition, Thomas Y. Crowell & Co Harper & Row
Publishers, New York, U.S.A. 1989.
2. S. P. Timoshnko ad D. H. Young, “Vinration Problems in Engineering”, John Willey &
Sons Inc., 1984.
3. von Karman and A. Biot, “Mathematical Methods in Engineering”, McGraw-Hill Book
Co., New York, 1985.
29
AE2035 AIR TRAFFIC CONTROL AND PLANNING L T P C


OBJECTIVE
To study the procedure of the formation of aerodrome and its design and air traffic
control.
UNIT I BASIC CONCEPTS 9
Objectives of ATS - Parts of ATC service – Scope and Provision of ATCs – VFR & IFR
operations – Classification of ATS air spaces – Varies kinds of separation – Altimeter
setting procedures – Establishment, designation and identification of units providing ATS
– Division of responsibility of control.
UNIT II AIR TRAFFIC SERVICES 9
Area control service, assignment of cruising levels minimum flight altitude ATS routes
and significant points – RNAV and RNP – Vertical, lateral and longitudinal separations
based on time / distance –ATC clearances – Flight plans – position report
UNIT III FLIGHT INFORMATION ALERTING SERVICES, COORDINATION,
EMERGENCY PROCEDURES AND RULES OF THE AIR 10
Radar service, Basic radar terminology – Identification procedures using primary /
secondary radar – performance checks – use of radar in area and approach control
services – assurance control and co-ordination between radar / non radar control –
emergencies – Flight information and advisory service – Alerting service – Co-ordination
and emergency procedures – Rules of the air.
UNIT IV AERODROME DATA, PHYSICAL CHARACTERISTICS
AND OBSTACLE RESTRICTION 9
Aerodrome data - Basic terminology – Aerodrome reference code – Aerodrome
reference point – Aerodrome elevation – Aerodrome reference temperature – Instrument
runway, physical Characteristics; length of primary / secondary runway – Width of
runways – Minimum distance between parallel runways etc. – obstacles restriction.
UNIT V VISUAL AIDS FOR NAVIGATION, VISUAL AIDS FOR
DENOTING OBSTACLES EMERGENCY AND OTHER SERVICES 8
Visual aids for navigation Wind direction indicator – Landing direction indicator –
Location and characteristics of signal area – Markings, general requirements – Various
markings – Lights, general requirements – Aerodrome beacon, identification beacon –
Simple approach lighting system and various lighting systems – VASI & PAPI - Visual
aids for denoting obstacles; object to be marked and lighter – Emergency and other
services.
TOTAL: 45 PERIODS
TEXT BOOK
1. AIP (India) Vol. I & II, “The English Book Store”, 17-1, Connaught Circus, New Delhi.
REFERENCES
1. “Aircraft Manual (India) Volume I”, latest Edition – The English Book Store, 17-1,
Connaught Circus, New Delhi.
2. “PANS – RAC – ICAO DOC 4444”, Latest Edition, The English Book Store, 17-1,
Connaught Circus, New Delhi.
30
AE2036 PRODUCTION PLANNING AND CONTROL L T P C


OBJECTIVE:
To understand the various components and functions of production planning and control
such as product planning, product scheduling and inventory control.
UNIT I INTRODUCTION: 8
Factors affecting planning-Forecasting information necessary for pre-planning-sources
of information-Methods of forecasting-aircraft components requiring overhaul-repairmodifications-
premature-failures-project planning-estimates of plant, machinery,
buildings, manpower, materials, spare parts, time, and cost estimates.
UNIT II MATERIALS, MACHINES AND PROCESSES: 9
Production engineering knowledge necessary for Planning, machine tools and
processes.-Materials including aircraft materials and their processing-Spare parts
required for overhaul and maintenance-Ground handling equipment-testing of
components and aircraft overhaul-standards for acceptance after overhaul.
UNIT III EQUIPMENT AND TOOLS: 10
Pre-planning required for provision of special tools, jigs, fixtures and test equipment
required for overhaul and maintenance-types and description of major test equipment.
UNIT IV PRODUCTION PLANNING: 10
Production planning function of routing, estimating and scheduling –LOB-CPM and
PERT. Queuing theory, sequencing in jobs, shop scheduling, assembly line balancingcharts
and graphs.
UNIT V PRODUCTION CONTROL: 8
Production control functions of dispatching, progressing and evaluation-Activities of
progressing-shop procedures-maintenance of critical data statistics of evaluation control
charts.
TOTAL: 45 PERIODS
TEXT BOOKS:
1. Thomas. L. “Production planning and control” Mc Graw Hill, 1985.
2. Jain. K. C. and Aggarwal. L. N. “Production planning and control and Industrial
Management, Khanna publishers, 1990.
REFERENCES:
1. Buffa. E. S. and Sarin. R. K. “Modern production / operations management”8th ed,
John Willey and sons, 2000.
2. MacNiece. E. H. “Production forecasting, planning and control”, John Willey, 1986.
3. Mages. J. F. “Production planning and Inventory control”, McGraw Hill, 1990.
31
AE 2037 ENGINE SYSTEM AND CONTROL L T P C


OBJECTIVE
• To give an exposure to the different systems in Aircraft Engines and the
methodologies as well as instruments used for engine controls & indication.
UNIT I ENGINE CONSTRUCTION 10
Layout – Piston Engine – Turbo Prop-Gas Turbine Engines – Modular concept. Oil
System – Fuel systems – Heat Management system of Gas Turbine Engines. Lubricants
and Fuel used – Engine Materials – Compressor, Turbine, Frames and Casting etc.
UNIT II ENGINE SYSTEMS 9
Air System and Pneumatics – Engine controls – FADEC Fire Protection System –
Ignition and Starting system – Engine Anti-icing system.
UNIT III MAINTENANCE & INSPECTION 6
Maintenance aspects of Gas Turbine Engines – Preventive condition (performance)
Monitoring – Boroscopic Inspection – On wing Trim Balance – Test bed overhaul.
UNIT IV CONTROL INSTRUMENTS 10
Engine sensors – Basic construction – Processing signals – Analog and Digital
Indication – Scaling – Monitoring of Instruments / Indicators.
UNIT V ENGINE INSTRUMENTS 10
Primary instruments – RPM, Fuel flow, Exhaust Gas Temperature, Thrust parameters –
Secondary Instruments – Vibration indicator, Oil Pressure and Oil Temperature indictor,
Nacelle Temp. Indicator.
TOTAL: 45 PERIODS
TEXT BOOKS
1. Aircraft Instruments – E H J Pallett, Pitman & Co., 1993
2. Aircraft Gas Turbine Engine Technology – Irwin E Treager, English Book Stores,
New Delhi
3. Aircraft Gas Turbine and Operation – PRATT AND WHITENY, United Technologies,
English Book Stores, New Delhi
REFERENCES
1. “General Hand Book of Airframe and Power Plant” US Department of Transportation,
FAA, English Book Stores, New Delhi
2. Turbo Mache of Gas Turbine, English Book Stores, New Delhi
3. Aircraft Gas Turbine Guide, P&W Publications, English Book Stores, New Delhi
4. Rolls Royce, The Jet Engine, Rolls Royce Ltd., III Edition, 1983

No comments:

Post a Comment