Saturday, October 8, 2011

B.Sc.PHYSICS UNIVERSITY OF DELHI course syllabus


B.Sc.PHYSICS UNIVERSITY OF DELHI course syllabus 


B.Sc. (H) PHYSICS
THREE-YEAR FULL-TIME PROGRAMME 
(Six-Semester Course) 
COURSE CONTENTS 
(Effective from the Academic Year 2010-2011)
UNIVERSITY OF DELHI 
DELHI – 110 007 2 
Course Structure
YEAR-1
PART I: Semester-1
Paper 1 PHHT - 101  Mathematical Physics-I 
Paper 2 PHHT - 102  Mechanics 
Paper 3  CHCT - 101   Chemistry 
Paper 4  ENAT - 101  Technical Writing & Communication in English  
PART I: Semester-2
Paper 5 PHHT - 203  Mathematical Physics-II 
Paper 6 PHHT - 204  Oscillations and Waves 
Paper 7  PHHT - 205  Electricity and Magnetism 
Paper 8  PHHT - 206  Digital Electronics 
In addition, there shall be one qualifying paper in self-learning mode called 
Environmental Studies offered in Semester-2  3 
YEAR-2
PART II: Semester-3
Paper 9 PHHT –307 Mathematical Physics-III 
Paper 10 PHHT - 308  Microprocessor and Computer Programming  
Paper 11  PHHT - 309  Thermal Physics 
Paper 12  PHHT - 310  Mathematics-I 
PART II: Semester-4
Paper 13 PHHT - 411  Mathematical Physics-IV 
Paper 14  PHHT - 412  Optics 
Paper 15  PHHT - 413  Mathematics-II (Analysis and Statistics) 
Paper 16  PHHT - 414  Numerical Analysis 4 
YEAR-3
PART III: Semester-5
Paper 17 PHHT - 515  Mathematical Physics-V 
Paper 18 PHHT - 516  Quantum Mechanics 
Paper 19  PHHT - 517  Atomic and Molecular Physics 
Paper 20  PHHT - 518  Electronic Devices 
PART III: Semester-6
Paper 21 PHHT - 619  Electromagnetic Theory 
Paper 22 PHHT - 620  Statistical Physics 
Paper 23  PHHT - 621  Solid State Physics 
Paper 24  PHHT - 622  Nuclear and Particle Physics 5 
Paper-1-PHHT-101: Mathematical Physics-I
THEORY               Marks: 100 
Vector Calculus 
Vector Differentiation :- Scalar and Vector Fields. Ordinary and Partial Derivative of a Vector 
w.r.t. Coordinates. Space Curves. Unit Tangent Vector and Unit Normal Vector (without 
Frenet - Serret Formulae). Directional Derivatives  and Normal Derivative. Gradient of a 
Scalar Field and its Geometrical Interpretation. Divergence and Curl of a Vector Field. Del 
and Laplacian Operators. Vector Identities.  
                                                                (12 Lectures) 
Vector Integration :- Ordinary Integral of Vectors. Line, Surface and Volume Integrals. Flux 
of a Vector Field. Gauss’ Divergence Theorem, Green’s Theorem and Stokes Theorem. 
                                                                                                                  (8 Lectures) 
Orthogonal Curvilinear Coordinates 
Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian 
in Cartesian, Spherical and Cylindrical Coordinate Systems.  
                                  (5 Lectures) 
Multiple Integrals 
Double and Triple Integrals : Change of Order of Integration. Change of Variables and 
Jacobian. Applications of Multiple Integrals : (1) Area Enclosed by Plane Curves, (2)  Area of 
a Curved Surface, (3) Volumes of Solids.           
(5 Lectures) 
Some Special Integrals 
Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of 
Gamma Functions.  Error Function (Probability Integral). 
                                                                                                                  (4 Lectures)
Theory of Errors 
Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and 
Probable Error.  
                                                                                                         (4 Lectures) 
Fourier Series 
Fourier Series. Dirichlet Conditions (Statement only). Kronecker’s Method for Computation 
of Fourier Coefficients. Even and Odd Functions. Orthogonality of Sine and Cosine 
Functions. Sine and Cosine Series. Applications: Square Wave, Triangular Wave, Output of 
Full Wave Rectifier and other Simple Functions. Summing of Infinite Series Term-by-Term 
Differentiation and Integration of a Fourier Series.  
                                                                                                     (10 lectures)  6 
Suggested Books:
1. Schaum's Outline of Vector Analysis, 2
nd
 Edn. By Murray Spiegel, Seymour Lipschutz 
(McGraw-Hill, 2009) 
2. Vector Analysis and Cartesian Tensors, 3ed By D. E. Bourne, P C Kendall (Chapman & 
Hall, 1992) 
3. Schaum's Outline of Theory and Problems of Fourier Analysis By Murray R. Spiegel 
(McGraw-Hill, 1974) 
4. Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Limited,1985) 
5. Introduction to Mathematical Physics by Charlie Harper. ( P.H.I., 1995). 
6. Higher Engineering Mathematics by B S Grewal, Khanna Publishers (2000). 7 
Paper-2-PHHT-102:  Mechanics
THEORY                      Marks:100
                     
Fundamentals of Dynamics 
Dynamics of a System of Particles. Centre of Mass.  Conservation of Momentum. Idea of 
Conservation of Momentum from Newton’s Third Law. Impulse. Momentum of Variable 
Mass System : Motion of Rocket.  
                                                                              (3 Lectures) 
Work and Energy Theorem :-  Work and Kinetic Energy Theorem. Conservative and NonConservative Forces. Potential Energy. Energy Diagram. Stable and Unstable  Equilibrium. 
Gravitational Potential Energy. Elastic Potential Energy. Force as Gradient of Potential 
Energy. Work and Potential energy. Work done by Non-conservative Forces. Law of 
Conservation of Energy.    
                                                 (5 Lectures) 
Elastic and Inelastic Collisions between particles. Centre of Mass and Laboratory Frames.     


                                                                                                                  (4 Lectures)
Rotational Dynamics 
Angular Momentum of a Particle and System of Particles. Torque. Conservation of Angular 
Momentum. Rotation about a Fixed Axis. Moment of Inertia. Calculation of Moment of 
Inertia for Rectangular, Cylindrical, and Spherical Bodies. Kinetic Energy of Rotation. Motion 
involving both Translation and Rotation.       
                                                              (6 Lectures) 
Gravitation and Central Force Motion 
Law of gravitation. Inertial and Gravitational Mass. Potential and Field due to Spherical Shell 
and Solid Sphere.   
                                                                                                      (3 Lectures) 
Motion of a Particle under Central Force Field.  Two Body Problem and its Reduction to One 
Body Problem and its Solution. The Energy Equation  and Energy Diagram. Kepler’s Laws 
(Ideas Only). Orbits of Artificial Satellites.  
                                                                                                          (6 Lectures)
Elasticity 
Relation Between Elastic Constants. Twisting Torque on a Cylinder or Wire.         
(3 Lectures) 8 
Fluid Motion 
Kinematics of Moving Fluids :-  Poiseuille’s Equation for Flow of a Liquid through a Capillary 
Tube.   
                                                                                                                  (2 Lectures) 
Inertial and Non- Inertial Systems 
Reference Frames :- Inertial Frames and Galilean Transformations. Galilean Invariance and 
Conservation Laws. Non-inertial Frames and Fictitious Forces. Uniformly Rotating Frame. 
Physics Laws in Rotating Coordinate Systems. Centrifugal forces: Coriolis Force and its 
Applications. Components of Velocity and Acceleration in Cylindrical and Spherical 
Coordinate Systems. 
                                                                                                   (6 Lectures) 
Special theory of Relativity 
Michelson-Morley Experiment and its Outcome. Postulates of Special Theory of Relativity. 
Lorentz Transformations. Simultaneity and Order of  Events. Lorentz Contraction. Time 
Dilation. Relativistic Transformation of Velocity, Frequency and Wave Number. Relativistic 
Addition of Velocities. Variation of Mass with Velocity.  Rest Mass. Massless Particles. Massenergy Equivalence. Bucherer’s experiment. Relativistic Doppler effect. Relativistic 
Kinematics. Transformation of Energy and Momentum.      Energy-Momentum Four Vector. 
                                                                                                                (10 Lectures) 
Suggested Books:
1. An introduction to mechanics by Daniel Kleppner, Robert J. Kolenkow (McGraw-Hill, 
1973)  
2. Mechanics Berkeley physics course, v.1: By Charles  Kittel,Walter Knight, Malvin 
Ruderman,Carl Helmholz,Burton Moyer, (Tata McGraw-Hill, 2007) 
3. Mechanics by  D S Mathur (S. Chand & Company Limited, 2000) 
4. Mechanics by Keith R. Symon (Addison Wesley; 3 edition, 1971) 
5. University Physics by F W Sears, M W Zemansky and H D Young (Narosa Publishing 
House,1982) 9 
Paper-3-CHCT-101: Chemistry 
THEORY                Marks: 100 
Bonding 
Covalent Bonding : Qualitative approach to Valence Bond Theory and  its Limitations. 
Hybridization, Equivalent and Non-equivalent Hybrid Orbitals, Bent’s Rule and Applications.  
                                                                                                                                       (3 Lectures)
Molecular Orbital Theory :  Symmetry and Overlap. Molecular Orbital Diagrams of diatomic 
and simple polyatomic systems (O2, C2, B3, CO, NO and their ions; HCL, BeF2, CH4, BCl3) 
(Idea of Sp3 Mixing and Orbital Interaction to be given).  
                                           (4 Lectures) 
Organization of Solids 
Packing in Crystals  :  Close Packed Structures. (1) Spinal, (2) Ilmenite and (3) Perovskite 
Structures of Mixed Metal Oxides. Size Effects, Radius, Ratio Rules and their Limitations. 
Lattice Energy : Born Equation (Calculations of Energy in Ion Pair and Ion-pairs Square 
Formation), Madelung Constant. Kapustinskii Equation and its Applications. Born-Haber 
Cycle and its Applications. 
                                                                                          (5 Lectures)
Weak Chemical Forces  : Van-der-Waals Forces, Hydrogen Bonding. Effects of Chemical 
Forces on M.P., B.P., and Solubility. Energetics of Dissolution Process.  
                  (3 Lectures) 
Coordination Compounds and Inorganic Reaction Mechanisms 
Crystal Field Theory : Measurement of 10 Dq CFSE in Weak and Strong \Fields. Pairing 
Energies. Factors affecting the Magnitude of 10 Dq. Octahedral vs. Tetrahedral 
Coordination. Tetragonal Distortions from Octahedral Symmetry. The Jahn – Teller 
Theorem. Square – Planar Coordination. Ligand Field and Molecular Orbital Theories.  
                                                                                                                                      (6 Lectures) 
Properties of Coordination Complexes : The Trans Effect. Mechanism of the Trans Effect. 
Kinetics of Square Planar Substitution Reactions. Thermodynamic and Kinetic Stability. 
Labile and Inert Complexes.  Kinetics of Octahedral Substitution Reaction. Mechanism of 
Substitution in Octahedral Complexes. Mechanism of Electron Transfer Reactions (Inner and 
Outer Sphere Mechanism).  
                                                                                            (6 Lectures) 
Organic Chemistry 10 
Stereochemistry : Bonding in Organic Molecules and its effects on Shape Chirality and RS 
Nomenclature as applied to Chiral Centers. Treatment of Chirality upto three chiral centers. 
Conformation of Acyclic and Cyclic Systems, Conformational Analysis of Di-substituted 
Cyclohexanes. Geometrical Isomerism and E-2 Nomenclature.  
                                (4 Lectures) 
  
Reaction Mechanism in Organic Chemistry : Electronic Displacements in Organic Molecules. 
Aromaticity. Reactivity of Organic Molecules. Heterolytic and Hemolytic Fission. 
Nucleophiles, Electrophiles, Acids and Bases and their Relative Strengths (including Carbon 
Acids). Addition, Elimination and Substitution Reactions (including Electrophilic, 
Nucleophilic and Aromatic Types). Arynes and Carbenes as Reaction Intermediates.   
                                                                                                                  (5 Lectures) 
Functional Group Chemistry : Functional Group. Orientation Effect in Aromatic Substitution. 
Groups. (1) Hydroxyl Group, (2) Phenol, (3) Carbonyl Group, (4) Carboxylic Acid Group and 
its Derivatives : Esters and Amides, (5)  Cyno Group, (6) Nitro Group, and (7) Amino Group. 
                                                                                                                  (5 Lectures) 
Organic Reactions :  (1) Aldol Condensation, (2) Cannizaro Reaction, (3) Claisen 
Condensation, (4) Darzen Reaction, (5) Dickermann Reaction, (6) Grignard Synthesis, (7) 
Mannich Reaction, (8)  Michael Reaction, and (9) Perkin Reaction, etc.            
                                (4 Lectures) 
Polymerization :  Types of Polymerization. Forms of Polymers. (1) Condensation 
Polymerization, (2) Ring Opening Polymerization, (3) Addition Polymerization, and (4) 
Zieglar-Natta Polymerization. Natural and Synthetic Rubbers.    
                              (3 Lectures) 
Suggested Books:
1. P S Sindhu, Modern Chemisty, S. Chand & Sons. 
2. J.D. Lee,  A New Conscise Inorganic Chemistry,   E.L.B.S.  
3. I.L. Finar, Organic  Chemistry,  (Vol. I & II),  E.L.B.S. 
4. R.T. Morrison & R.N. Boyd, Organic  Chemistry,   Prentice Hall.  
5. Arun Bahl and B.S. Bahl, Advanced Organic  Chemistry,   S. Chand. 
6. T.W. Graham Solomons, Organic  Chemistry,  John Wiley and Sons. 
Paper-4-ENAT-101: Technical Writing & Communication in English 
THEORY                Marks: 100 
Unit 1  
Communication : Language and communication, differences between speech and writing, 
distinct features of speech, distinct features of writing.  
Unit 2  
Writing Skills : Selection of topic, thesis statement, developing the thesis; introductory, 11 
developmental, transitional and concluding paragraphs, linguistic unity, coherence and 
cohesion, descriptive, narrative, expository and argumentative writing.  
Unit 3  
Technical Writing : Scientific and technical subjects; formal and informal writings; formal 
writings/reports, handbooks, manuals, letters, memorandum, notices, agenda, minutes; 
common errors to be avoided.  
SUGGESTED READINGS 
1. M. Frank. Writing as thinking: A guided process approach, Englewood Cliffs, Prentice 
Hall Reagents.  
2. L. Hamp-Lyons and B. Heasely: Study Writing;  A course in written English. For 
academic and professional purposes, Cambridge Univ. Press.  
3. R. Quirk, S. Greenbaum, G. Leech and J. Svartik: A comprehensive grammar of the 
English language, Longman, London.  
4. Daniel G. Riordan & Steven A. Panley: “Technical Report Writing Today” - Biztaantra. 
Additional Reference Books  
1. Daniel G. Riordan, Steven E. Pauley, Biztantra: Technical Report Writing Today, 8th 
Edition (2004).  
2. Contemporary Business Communication, Scot Ober, Biztantra, 5th Edition (2004). 12 
Physics Lab I 
PRACTICALS               Marks: 100 
1:General
1. To use a Multimeter for measuring (a) Resistances,  (b) A/C and DC Voltages, (c) AC 
and DC Currents, (d) Capacitances, and (e) Frequencies. 
2. To test a Diode and Transistor using (a) a Multimeter and (b) a CRO. 
3. To measure (a) Voltage, (b) Frequency and (c) Phase Difference using a CRO.  
4. To study Random Errors. 
5. To determine the Height of a Building using a Sextant. 
6. To study the Characteristics of a Series RC Circuit. 
2:Mechanics
1. To determine the Acceleration due to Gravity and Velocity for a freely falling body, 
using Digital Timing Techniques. 
2. To determine the Moment of Inertia of a Flywheel. 
3. To determine the Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille’s 
method).  
4. To determine the Young's Modulus of a Wire by Optical Lever Method. 
5. To determine the Modulus of Rigidity of a Wire by Maxwell’s needle.  
6. To determine the Elastic Constants of a Wire by Searle’s method. 
Note
1. Each College should set up all the Practicals from the above list. 
2. Each Student is required to perform at least 8 Practicals by taking at least 3 
Practicals from each of the units 105.1 and 105.2. 
Suggested Books:
1. Geeta Sanon, BSc Practical Physics, 1
st
 Edn. (2007), R. Chand & Co. 
2. B. L. Worsnop and H. T. Flint, Advanced Practical Physics, Asia Publishing House, New 
Delhi. 
3. Indu Prakash and Ramakrishna, A Text Book of Practical Physics, Kitab Mahal, New 
Delhi. 
4. D. P. Khandelwal, A Laboratory Manual of Physics for Undergraduate Classes, Vani 
Publication House, New Delhi. 
5. Nelson and Jon  Ogborn, Practical Physics. 
Paper-3-CHCP-101: Chemistry Lab 13 
PRACTICALS                                                                  Marks:50 
1.     Separation of Cations and Anions by Paper Chromatography 
2.     Preparation of  
(i)  Manganese (III) Phosphate. Estimation of Mn content in the above complex 
colorimetrically (periodate oxidation). Estimation of oxidizing equivalents in the above 
complex titrimetrically (titration of liberated iodine). 
(ii)   Tetrammine copper (II) Sulfate and estimation of copper as CuCNS gravimetrically 
in the above complex.  
3.     Preparation of 
 (i) Aspirin (ii) Hippuric Acid (Benzoylglycine) (iii) Methyl Orange or Phenolphthalein. 
Characterisation by mp, mmp, and TLC.  
4.     Two-step Preparations 
 (i)   Nitrobenzene from Benzene, Purification of Nitrobenzene and characterization 
by refractive index, further nitration. 
(ii)   P-bromoacetanilide from Aniline. 
5.    Preparation of Lactose and Casein from Milk or isolation of Caffeine from Tea Leaves 
(mp, color test). 
6. Estimation of Glucose, Saponification Value or Iodine Value of a fat or oil. 
7.     Potentiometric Titration of Mohr’s salt with K2Cr2O7 or KMnO4 using Digital  
         Multimeter or low cost Potentiometer. 
8.     Conductometric Titration of a solution of HCL or CH3COOH with NaOH by a    
         direct  reading Conductometer. 
9.     Determination of Molecular Mass of a Polymer by Measurement of Viscosity. 
10.   The effect of Detergent on the Surface Tension of Water. (Variation of Surface Tension 
with Concentration to be studied). 
11.   Determination of the Rate Law for one of the following reactions. All solutions needed 
to be provided. 
                   (i)   Persulphate-iodine Reaction. 
                   (ii)  Iodination of Acetone. 
12.   To study the Kinetics of Inversion of Cane Sugar (Polarimetrically). 
Suggested Books:
1. A.I. Vogel, Text-Book of Practical Organic Chemistry, Prentice Hall 5
th
 Edition. 
2. A.I. Vogel, Qualitative Chemical Analysis, Prentice Hall 6
th
 Edition. 
3. A.I. Vogel, Qualitative Inorganic Analysis,  Prentice Hall 7
th
 Edition. 
4. F.G. Mann & B.C. Saunders, Practical Organic  Chemistry,  Orient Longman. 14 
Paper-5-PHHT-203: Mathematical Physics-II 
THEORY             Marks: 100 
Differential Equations 
Classification : Ordinary and Partial, Order and Degree, Linear and Nonlinear, Homogeneous 
and Non-homogeneous. Solution : Explicit and Implicit, Number of Arbitrary Constants. 
                                                                                                                  (2 Lectures) 
Linear Ordinary Differential Equations 
First order :- (1) Separable Equations. Initial Value Problem. (2) Exact Equations. Integrating 
Factor.   (3) Linear Equations. Lagrange’s Method of Variation of Parameters.   
                                                                                            (8 Lectures) 
Second order:- Homogeneous Equations with Constant Coefficients. Wronskian and General 
Solution. Statement of Existence and Uniqueness Theorem for Initial Value Problems. 
Solution of Non-homogeneous Equations by D Operator Method. Particular Integral. 
Methods of Undetermined Coefficients and Variation of Parameters. Equations Reducible to 
those with Constant Coefficients. Bernoulli and Euler Equations.  
                                                                                     (16 Lectures) 
Coupled Differential Equations :- Solution by Method of Elimination.                    
   (2 Lectures) 
Calculus of Variations 
Variational Calculus : Variational Principle. Euler’s Equation and its Application to Simple 
Problems. Geodesics. Concept of Lagrangian. Generalized Coordinates.  Definition of 
Canonical Momenta. Euler-Lagrange’s Equations of Motion and its Applications to Simple 
Problems: (e.g., simple pendulum and one dimensional harmonic oscillator).  Definition of 
Canonical Momenta. Canonical Pair of Variables. Definition of Generalized Force.: Definition 
of Hamiltonian (Legendre Transformation). . Hamilton’s Principle.  Poisson Brackets and 
their Properties. Lagrange Brackets and their Properties.   
                                                              (14 Lectures) 
Constrained Maxima and Minima. Lagrange’s Method of Undetermined Multipliers and its 
Application to Simple Problems in Physics. 
                                                                 (6 Lectures) 15 
Suggested Books:
1. A Text Book of Differential Equations By N. M. Kapoor (Pitambar Publishing, 2006) 
2. Schaum's outline of theory and problems of differential equations By Richard 
Bronson (McGraw-Hill Professional, 1994) 
3. Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Limited,1985) 
4. Higher Engineering Mathematics by B S Grewal, Khanna Publishers (2000)16 
Paper-6-PHHT-204:  Oscillations & Waves
THEORY         Marks: 100
Oscillations 
SHM :- Simple Harmonic Oscillations.  Differential  Equation of SHM and its Solution. 
Amplitude, Frequency, Time Period and Phase. Velocity and Acceleration. Kinetic, Potential 
and Total Energy and their Time Average Values.  Reference Circle. Rotating Vector 
Representation of SHM.  
                                                                                                  (4 Lectures) 
Free Oscillations of Systems with One Degree of Freedom :- (1) Mass-Spring system, (2) 
Simple Pendulum, (3) Torsional Pendulum, (4) Oscillations in a U-Tube, (5) Compound 
pendulum: Centres of Percussion and Oscillation, and  (6) Bar Pendulum.          
    (5 Lectures) 
Superposition of Two Collinear Harmonic Oscillations :- Linearity and Superposition 
Principle. (1) Oscillations having Equal Frequencies and (2) Oscillations having Different 
Frequencies (Beats). Superposition of N Collinear Harmonic Oscillations with (1) Equal Phase 
Differences and (2) Equal Frequency Differences.   
                                                 (5Lectures) 
Superposition of Two Perpendicular Harmonic Oscillations :- Superposition of Two Mutually 
Perpendicular Simple Harmonic Motions with Frequency Ratios 1:1 and 1:2 using Graphical 
and Analytical Methods. Lissajous Figures and their Uses.   
                                        (5 Lectures) 
System with Two Degrees of Freedom : Coupled Oscillators. Normal Coordinates and 
Normal Modes. Energy Relation and Energy Transfer.  Normal Modes of N Coupled 
Oscillators.  
                                                                                                               (6 Lectures) 
Free Oscillations. Damped Oscillations : Damping Coefficient, Log Decrement. Forced 
Oscillations :  Transient and Steady States, Amplitude, Phase, Resonance, Sharpness of 
Resonance, Power Dissipation and Quality Factor. Helmholtz Resonator.    
            (6 Lectures) 
Waves 
Wave Motion :- Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane 
Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities.  Differential 
Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water 
Waves : Ripple and Gravity Waves.       
                                                                           (4 Lectures) 
Velocity of Waves :- Velocity of Transverse Vibrations of Stretched Strings. Velocity of 
Longitudinal Waves in a Fluid in a Pipe. Newton’s Formula for Velocity of Sound. Laplace’s 
Correction.  17 
(6 Lectures) 
Superposition of Two Harmonic Waves :- Standing (Stationary) Waves in a String : Fixed and 
Free Ends. Analytical Treatment. Phase and Group Velocities. Changes wrt Position and 
Time. Energy of Vibrating String. Transfer of Energy. Normal  Modes of Stretched Strings. 
Plucked and Struck Strings. Melde’s Experiment. Longitudinal Standing Waves and Normal 
Modes. Open and Closed Pipes. Superposition of N Harmonic Waves.                                                                                                                   
(7 Lectures)
Suggested Books:
1. Vibrations and Waves by A. P. French.(CBS Pub. & Dist., 1987) 
2. The Physics of Waves and Oscillations by N.K. Bajaj (Tata McGraw-Hill, 1988) 
3. Fundamentals of Waves & Oscillations By K. Uno Ingard (Cambridge University Press, 
1988) 
4. An Introduction to Mechanics by Daniel Kleppner, Robert J. Kolenkow (McGraw-Hill, 
1973)  
5. Waves: BERKELEY PHYSICS COURSE (SIE) by Franks Crawford (Tata McGrawHill, 2007).18 
Paper-7-PHHT-205: Electricity and Magnetism
THEORY                Marks: 100 
Electric Circuits 
AC Circuits :- Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) 
Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit. 
                                                                                                                 (4 Lectures)
Network theorems :-  Ideal Constant-voltage and Constant-current Sources. Network 
Theorems: (1) Thevenin theorem, (2) Norton theorem, (3) Superposition theorem, (4) 
Reciprocity theorem, and (5) Maximum Power Transfer theorem.  
                        (3 Lectures) 
Electric Field and Electric Potential 
Electric Field :- Electric Field and Lines. Electric Field E due to a Ring of Charge. Electric Flux. 
Gauss’s law. Gauss’s law in Differential form. Applications of Gauss’s Law : E due to (1) an  
Infinite Line of Charge, (2) a Charged Cylindrical Conductor, (3) an Infinite Sheet of Charge 
and Two Parallel Charged Sheets, (4) a Charged Spherical Shell, (5) a Charged  Conducting 
Sphere, (6) a Uniformly Charged Sphere, (7)  Two Charged Concentric Spherical Shells and  
(8) a Charged Conductor. Force on the Surface of a  Charged Conductor and Electrostatic 
Energy in the Medium surrounding a Charged Conductor.                                        
  (6 Lectures) 
Electric Potential :- Line Integral of Electric Field. Electric Potential Difference and Electric 
Potential V (Line integral). Conservative Nature of Electrostatic Field. Relation between  E
and V . Electrostatic Potential Energy of a System of Charges.  Potential and Electric Field of 
(1) a Dipole, (2) a Charged Wire and (3) a Charged  Disc. Force and Torque on a Dipole. 
Conductors in an Electrostatic Field. Description of a System of Charged Conductors. An 
Isolated Conductor and Capacitance. Method of Images and its Application to :- (1) Plane 
Infinite Sheet and (2)  Sphere.                                                                                          (9 Lectures) 
Electrostatic Energy of (1) a Point Charge, (2) a System of Point Charges, (3) a Uniform 
Sphere, (4) a Capacitor.  
(2 Lectures) 
Dielectric Properties of Matter 
Dielectrics:-  Electric Field in Matter. Dielectric Constant. Parallel Plate Capacitor with a 
Dielectric. Polarization, Polarization Charges and Polarization Vector. Electric Susceptibility. 
Gauss’s law in Dielectrics. Displacement vector  D. Relations between the three Electric 
Vectors. Capacitors filled with Dielectrics.   19 
                                                                  (6 Lectures) 
     
Magnetic Field 
Magnetic Effect of Currents :- Magnetic Field B. Magnetic Force between Current Elements 
and Definition of  B. Magnetic Flux. Biot-Savart’s Law :  B due to (1) a Straight Current 
Carrying Conductor and (2) Current Loop. Current Loop as a Magnetic Dipole and its Dipole 
Moment (Analogy with Electric Dipole). Ampere’s Circuital law (Integral and Differential 
Forms): B due to (1) a Solenoid and (2) a Toroid. Properties of B. Curl and Divergence of B. 
Vector Potential.   
                                                                                                             (4 Lectures) 
Forces on an Isolated Moving Charge. Magnetic Force on a Current Carrying Wire. Torque 
on a Current Loop in a Uniform Magnetic Field.  
                                                           (2 Lectures) 
Magnetic Properties of Matter 
Magnetism of Matter:- Gauss’s law of magnetism (Integral and Differential Forms).  
Magnetization current. Relative Permeability of a Material. Magnetic Susceptibility. 
Magnetization Vector (M). Magnetic Intensity (H). Relation between  B,  M and  H. Stored 
Magnetic Energy in Matter. Magnetic Circuit. B-H Curve and Energy Loss in Hysteresis.  
                                                                                                                  (4 Lectures) 
Electromagnetic induction 
Faraday’s law (Differential and Integral forms). Lenz’s Law. Self and Mutual Induction. 
Energy stored in a Magnetic Field.  
                                                                              (4 Lectures) 
Ballistic Galvanometer 
  
Potential Energy of a Current Loop. Ballistic Galvanometer: Current and Charge sensitivity. 
Electromagnetic Damping. Logarithmic Damping. CDR.    
                                        (4 Lectures) 
Suggested Books :
1. Electricity and Magnetism By Edward M. Purcell (McGraw-Hill Education, 1986) 
2. Fundamentals of Electricity and Magnetism By Arthur F. Kip (McGraw-Hill, 1968) 
3. Electricity and Magnetism by J.H.Fewkes & John Yarwood. Vol. I (Oxford Univ. Press, 
1991). 
4. Electricity and Magnetism. By D C Tayal (Himalaya Publishing House,1988). 
5. David J. Griffiths, Introduction to Electrodynamics, 3
rd
 Edn, (Benjamin 
Cummings,1998). 20 
Paper-8-PHHT-206: Digital Electronics 
THEORY              Marks: 100 
Introduction to CRO 
Block Diagram of CRO. Electron Gun, Deflection System and Time Base. Deflection 
Sensitivity. Applications of CRO :  (1) Study of Waveform, (2) Measurement of Voltage, 
Current, Frequency, and Phase Difference.     
                                                           (3 Lectures) 
Analog Circuits  
Integrated Circuits (Qualitative Treatment only) :-  Active and Passive components. Discrete 
Circuit Component. Wafer. Chip. Advantages and Drawbacks of ICs. Scale of integration : 
SSI, MSI, LSI and VLSI (Basic Idea and Definitions Only). Classification of ICs. Fabrication of 
Components on Monolithic ICs. Examples of Linear and Digital ICs.             
            (3 Lectures) 
Operational Amplifiers (Use Black Box approach) :-  Basic Characteristics of Op-Amps. 
Characteristics of an Ideal Op-Amp. Feedback in Amplifiers . Open-loop and Closed-loop 
Gain. Frequency Response. CMRR. Virtual ground.  
                                                 (5 Lectures) 
Applications of Op-Amps :  (1) Inverting and Non-inverting Amplifiers, (2)  Adder,  (3)  
Subtractor,  (4) Unity follower,  (5)  Differentiator,  (6)  Integrator,   (7) Zero Crossing 
Detector.                                 
                                                                                    (5 Lectures) 
Timers (Use Black Box approach) :- 555 Timer and its Applications : Astable and Monostable 
Multivibrator.   
                                                                                                              (2 Lectures) 
Digital Circuits 
Difference Between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and 
Binary to Decimal Conversion. AND, OR and NOT Gates (Realization using Diodes and 
Transistor). NAND AND NOR Gates. Exclusive OR and Exclusive NOR Gates.      
    (3 Lectures) 
Boolean algebra :-  De Morgan’s Theorems. Boolean Laws. Simplification of Logic Circuit 
using Boolean Algebra. Fundamental Products. Minterms and Maxterms. Conversion of a 
Truth Table into an Equivalent Logic Circuit by (1) Sum of Products Method and (2) 
Karnaugh Map.  
                                                                                                        (6 Lectures) 
           
Data processing circuits :- Basic Idea of Multiplexers, De-multiplexers, Decoders, Encoders, 
Parity Checkers.   
                                                                                                         (3 Lectures) 
  
Memories :- Read-only memories (ROM), PROM, EPROM.                        21 
              (2 Lectures) 
           
Arithmetic Circuits :- Binary Addition. Binary Subtraction using 2’s Complement Method). 
Half Adders and Full Adders and Subtractors (only up to Eight Bits).    
                     (3 Lectures) 
          
Sequential Circuits :- RS, D, and JK Flip-Flops. Level Clocked and Edge Triggered Flip-Flops. 
Preset and Clear Operations. Race-around Conditions in JK Flip-Flops. Master-Slave JK FlipFlop (As Building Block of Sequential Circuits).  
                                                         (6 Lectures) 
           
Shift registers : -  Serial-in-Serial-out,  Serial-in-Parallel-out, Parallel-in-Serial-out, and 
Parallel-in-Parallel-out Shift Registers (only upto 4 bits).     
                                     (2 Lectures) 
           
Counters : - Asynchronous and Synchronous Counters. Ring Counters. Decade Counter.    
                                                                                                                  (3 Lectures) 
           
D/A and A/D conversion : - D/A converter – Resistive network. Accuracy and Resolution. 
 (2 Lectures) 
Suggested Books: 
1. Digital principles and applications By Donald P. Leach & Albert Paul Malvino, 
(Glencoe, 1995). 
2. Digital Fundamentals, 3
rd
 Edition by Thomas L. Floyd (Universal Book Stall, India, 
1998). 
3. Digital Electronics by  R.P. Jain, 
4. Operational Amplifiers and Linear Integrated Circuits, 4
th
 Edition by Robert F 
Coughlin and Frederick F Driscoll (P.H.I. 1992) 
5. Op-Amps and  Linear Integrated Circuits by R. A. Gayakwad  (Pearson Education 
Asia, 2000) 22 
Physics Lab II 
PRACTICALS             Marks: 100 
1:Compound Pendulums
1. To determine g by Bar Pendulum. 
2. To determine g by Kater’s Pendulum. 
2:Springs
1. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g, and 
(c) Modulus of Rigidity 
2. To investigate the Motion of Coupled Oscillators. 
3:Melde’s Experiment
1. To determine the Frequency of an Electrically Maintained Tuning Fork by Melde’s 
Experiment. 
2. To verify λ
2
 – T Law by Melde’s Experiment. 
4:Resistance
1. To determine a Low Resistance by Carey Foster’s Bridge. 
2. To determine a Low Resistance by a Potentiometer.  
3. To determine High Resistance by Leakage of a Capacitor. 
5:Ballistic Galvanometer
1. To determine the (a) Charge Sensitivity and  (b) Current Sensitivity of a B.G.  
2. To determine the (a) Logarithmic Decrement and  (b) CDR of a B.G.  
6:Capacitance
1. To determine the Ratio of Two Capacitances by de Sauty’s Bridge.  
2. To determine the Dielectric Constant of a Dielectric placed inside a parallel plate 
capacitor using a B.G. 
7:Self & Mutual Inductance
1. To determine Self Inductance of a Coil by Anderson’s Bridge using AC 
2. To determine Self Inductance of a Coil by Rayleigh’s Method.  
3. To determine the Mutual Inductance of Two Coils by Absolute method using a B.G. 
8:A.C. Circuits
1. To study the response curve of a Series LCR circuit and determine its (a) Resonant 
Frequency, (b) Impedance at Resonance and (c) Quality Factor Q, and (d) Band 
Width.  
2. To study the response curve of a Parallel LCR circuit and determine its (a) AntiResonant Frequency and (b) Quality Factor Q. 
Note23 
1. Each College should set up all the Practicals from the above list. 
2. Each Student is required to perform at least 8 Practicals by taking at least 1 Practical 
from each of the units 205.1 to 205.8. 
Text and Reference Books
1. Geeta Sanon, BSc Practical Physics, 1
st
 Edn. (2007), R. Chand & Co. 
2. B. L. Worsnop and H. T. Flint, Advanced Practical Physics, Asia Publishing House, New 
Delhi. 
3. Indu Prakash and Ramakrishna, A Text Book of Practical Physics, Kitab Mahal, New 
Delhi. 
4. D. P. Khandelwal, A Laboratory Manual of Physics for Undergraduate Classes, Vani 
Publication House, New Delhi. 
5. Nelson and Jon  Ogborn, Practical Physics. 24 
Paper-8-PHHP-206: Digital Electronics 
PRACTICALS             Marks: 100 
1 :  Combinational Logic
5. To verify and design AND, OR, NOT and XOR gates using NAND gates. 
6. To design a combinational logic system for a specified Truth Table. 
7. To convert a Boolean Expression into Logic Gate Circuit and assemble it using logic 
gate ICs. 
8. To minimize a given Logic Circuit.  
2 :  Decoders
1. To study TTL ICs of (a) Binary Decoder, (b) 7-segment Decoder, and (c) Schmit 
Trigger. 
2. To design a Seven-Segment Display driver. 
  
3 :  Arithmetic and Logic Units (ALU)
1. Half Adder, Full Adder and 4-bit Binary Adder. 
2. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C. 
  
4 :  Flip-Flops, Counters and Shift Registers
1. To build Flip-Flop Circuits using elementary gates  (RS, Clocked RS, D-type, and JK 
Flip-Flop). 
2. To build a 4-bit Counter using D-type/JK Flip-Flop.
3. To make a Shift Register from D-type/JK Flip-Flop. 
4. Serial and Parallel shifting of data. 
  
5 :  Analog/Digital Conversion
1. To design an analog to digital converter of given specifications. 
2. To design a digital to analog converter of given specifications. 
6 : Op-Amp
1. To design an Inverting Amplifier of given gain using Op-amp 741 and to study its 
Frequency Response. 
2. To design a Non-Inverting Amplifier of given gain using Op-amp 741 and to study its 
Frequency Response. 
3. To design and study a precision Differential Amplifier of given I/O specification using 
Op-amp 741. 
7 : Timer
1. To design an Astable Multivibrator of given specifications using 555 Timer. 25 
2. To design a Monostable Multivibrator of given specifications using 555 Timer and to 
measure the Pulse-Width of its output. 
Note
1. Each college should set up all the Practicals from the above list. 
2. Each student is required to perform at least 8 Practicals by taking at least 1 Practical 
from each of the units 206.1 to 206.7.26 
Paper-9-PHHT-307: Mathematical Physics-III 
THEORY                Marks: 100 
Complex Variables 
Importance of Complex Numbers and their Graphical Representation. De-Moivre’s 
Theorem. Roots of Complex Numbers. Euler’s Formula. Functions of Complex Variables. 
Examples.                                                                                                                  (2 Lectures) 
Cauchy-Riemann Conditions. Analytic Functions. Singularities. Differentiation and Integral 
Formula. Morera’s Theorem, Cauchy’s Inequality. Liouville’s Theorem. Fundamental 
Theorem of Algebra. Multiple Valued Functions. Simple Ideas of Branch Points and Riemann 
Surfaces.  
                                                                                                                 (6 Lectures)
Power Series of a Complex Variable. Taylor and Laurent Series.   
                            (4 Lectures) 
Residue and Residue Theorem. Contour Integration and its Applications to Evaluation of 
Integrals. 
                                                                                                                (10 Lectures) 
  
Second Order Differential Equations and Special Functions 
Series Solution of Linear Second Order Ordinary Differential Equations : Singular Points of 
Second Order Differential Equations and their Importance. Series Methods (Frobenius). 
Legendre, Bessel, Hermite and Laguerre Differential Equations. 
                            (8 Lectures) 
Legendre, Hermite and Laguerre Polynomials : Rodrigues’ Formulae, Generating Functions, 
Recurrence Relations, Orthogonality. Series Expansion of a Function in terms of a Complete 
Set of Legendre Functions. Bessel Functions: First  and Second Kind, Generating Function, 
Recurrence Formulas, Zeros of Bessel Functions and Orthogonality.      
                (18 Lectures) 
Suggested Books: 
1. Schaum's Outline of Complex Variables By Murray R. Spiegel (McGraw-Hill, 1999) 
2. Complex Variables: Introduction and Applications, 2ed By Mark J. Ablowitz, A. S. 
Fokas (Cambridge University Press, 2003) 27 
3. Special Functions By George E. Andrews, Richard Askey, Ranjan Roy (Cambridge 
University Press, 2000) 
4. Special Functions for Scientists and Engineers By W. W. Bell (Dover Publishers, 1968) 
5. Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Limited,1985)
6. Introduction to Mathematical Physics by Charlie Harper. ( P.H.I., 1995).28 
Paper-10-PHHT-308: Microprocessors & Computer Programming 
THEORY                            Marks: 100
Hexadecimal Number System and Arithmetic. Computer  Organization. Input / Output 
Devices. Data Storage. Computer Memory. Memory Organization and Addressing. Memory 
Interfacing. Memory Map.    
                                                                                              (6 Lectures) 
Intel 8085 Microprocessor Architecture 
Main Features of 8085. Block Diagram. Components. Pin-out Diagram. Buses. Registers. 
ALU. Memory. Stack Memory. Interfacing Devices. Timing and Control Circuitry. Timing 
States. Instruction Cycle (Timing Diagram). Interrupts and Interrupt Control. Input / Output.  
                                                                                                                  (7 Lectures)
  
8085 Instructions :- Instructions. Machine Language. Assembly Language. Instruction Set 
and Format. Data Transfer, Arithmetic, Logical, Branching and Machine Control Operations. 
RIM and SIM. Addressing Modes : Register, Implied, Immediate, Direct and Indirect. 
                                                                                                                  (7 Lectures)
Microprocessor Programming :- Algorithm and Flowcharts. Simple programming Exercises : 
Addition, Subtraction, Multiplication and Division - Both 8 and 16 bit etc.   
            (4 Lectures) 
C & C++ Programming Languages 
    
Basic Components of Computer Systems. Types of Computer Systems. Types of Operating 
Systems.  
                                                                                                                  (1 Lectures)  
Introduction to Programming :- Algorithms: Sequence, Selection and Repetition. Structured 
Programming. Basic Idea of Compilers.   
                                                                   (1 Lecture) 
    
Data and Statements :- Data Types. Enumerated Data. Conversion and Casting. Constants 
and Variables. Mathematical, Relational, Logical and Bitwise Operators. Precedence of 
Operators. Expressions and Statements. Scope and Visibility of Data. Block, Local and Global 
variables.  Auto, Static and External Variables.   
                                                           (3 Lectures) 
  
I/O Statements :- printf, scanf, getc, getch, getchar, getche, etc. Streams : cin and cout.  
Manipulators for Data Formatting: setw, width, endl and setprecision etc. Ascii Files I/O. 
                                                                                                                  (3 Lectures) 
Preprocessor :-   #include and #define directives. 29 
                                                     (1 Lecture) 
   
Control Statements :- If-statement. If-else Statement. Nested if Structure. Else-if Statement. 
Ternary Operator. Goto Statement. Switch Statement. Unconditional and Conditional 
Looping.  While Loop. Do-while Loop. For Loop. Break and Continue Statements.  Nested 
Loops.   
                                                                                                                  (4 Lectures) 
Arrays and Structures :-    One and Two Dimensional Arrays. Idea of Structures.  
  (1 Lectures) 
Functions :- Standard Library Functions and User-defined Functions. Void Functions and 
Functions returning Values. Function Prototypes. Function Call by Value and by Reference. 
Recursion. Idea of Function Overloading.    
                                                                    (2 Lectures) 
          
Idea of Classes, Objects and Inheritance :-  Classes and Objects. Member Functions in a 
class.  Private and Public Qualifiers and Data Security. Constructors and Destructors. 
Inheritance.      
                                                                                                           (3 Lectures) 
Idea of Strings and Pointers.     
                                                                                   (1 Lectures)      
Programs:-  (1)  Roots of a Quadratic Equation,  (2)  Sum and Average of Numbers,  (3)  Sum, 
Difference and Product of Matrices,  (4) Largest  of Three Numbers,  (5)  Factorial of an 
Integer by Normal Method and by Recursion,  (6)   Largest  of a List of Numbers and its 
Location in the List,  (7)  Fitting a Straight Line to a Data,  (8)  Deviations About an Average,  
(9)  Arrange a List of Numbers in Ascending and Descending Order,  (10)  Binary Search. 
                                                                                                                  (4 Lectures)  
Suggested Books:
1. Microprocessor Architecture, Programming, and Applications with the 8085 By 
Ramesh S. Gaonkar, (Prentice Hall, 2002). 
2. Microprocessor Architecture, Programming, and Systems featuring the 8085 By 
William A. Routt, (Thomson Delmar Learning, 2006) 
3. Microprocessors and Programmed Logic, 2
nd
 Edition by Kenneth L Short (P.H.I. , 
1988) 
4. Schaum's Outline of Programming with C++, McGraw-Hill; 2
nd
  Edition 
5. Numerical Recipes in C++: The Art of Scientific Computing , Cambridge University 
Press; 2 Edition 
Paper -11-PHHT-309: Thermal Physics 30 
THEORY                Marks: 100 
Thermodynamics 
Zeroth and First Law of Thermodynamics :-  Thermodynamical Equilibrium. Zeroth Law of 
Thermodynamics and Concept of Temperature. Work and Heat Energy. State Functions. 
First Law of Thermodynamics. Differential form of First Law. Internal Energy. First Law and 
Various Processes. Applications of First Law : General Relation between Cp and Cv. Work 
Done during Isothermal and Adiabatic Processes. Compressibility and Expansion Coefficient. 
Atmosphere and Adiabatic Lapse Rate.    
                                                                        (4 Lectures) 
Second Law of Thermodynamics :-  Reversible and Irreversible Changes.  Conversion of 
Work into Heat and Heat into Work. Heat Engines. Carnot Cycle. Carnot Engine and its 
Efficiency. Refrigerator and its Efficiency. Second Law of Thermodynamics : Kelvin-Planck 
and Clausius Statements and their Equivalence. Carnot Theorem. Applications of Second 
Law of Thermodynamics : Thermodynamic Scale of Temperature and its Equivalence to 
Perfect Gas Scale. 
                                                                                                       (8 Lectures) 
Entropy :-. Change in Entropy. Entropy of a State.  Clausius Theorem. Clausius Inequality.  
Second Law of Thermodynamics in terms of Entropy. Entropy of a Perfect Gas. Entropy of 
the Universe. Entropy Changes in Reversible and Irreversible Processes. Principle of Increase 
of Entropy. Impossibility of Attainability of Absolute Zero : Third Law of Thermodynamics. 
Temperature-Entropy Diagrams. First and second order Phase Transitions.         
                                                     (6 Lectures)
Thermodynamic Potentials :- Extensive and Intensive Thermodynamic Variables. 
Thermodynamic Potentials U, H, F and G : Their Definitions, Properties and Applications. 
Surface Films and Variation of Surface Tension with Temperature. Magnetic Work. Cooling 
due to Adiabatic Memagnetization. Approach to Absolute Zero.                     
         (6 Lectures) 
Maxwell’s Thermodynamic Relations:-  Derivations of Maxwell’s Relations. Applications of 
Maxwell’s Relations:  (1) Clausius Clapeyron equation, (2) Values of Cp-Cv, 
 (3) Tds Equations, 
(4) Joule-Kelvin Coefficient for Ideal and Van der Waal Gases, (5) Energy Equations and  (6) 
Change of Temperature during an Adiabatic Process.                                      
             (6 Lectures) 
Kinetic Theory of Gases 
Distribution of Velocities :-  Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal 
Gas and its Experimental Verification. Doppler Broadening of Spectral Lines and Stern’s 
Experiment.  Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of 
Equipartition of Energy (No proof required). Specific Heats of Gases.                     
  (6 Lectures) 31 
Molecular Collisions :-  Mean Free Path. Collision Probability. Estimates of Mean Free Path. 
Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) 
Diffusion. Brownian Motion and its Significance.   
                                                   (4 Lectures) 
Real gases : Behavior of Real Gases:- Deviations from the Ideal  Gas Equation. The Virial 
Equation. Andrew’s Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and 
Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal’s Equation of State for 
Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with 
Experimental Curves.  p-V Diagrams. Joule’s Experiment. Free Adiabatic Expansion of a 
Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule-Thomson Effect for Real and Van 
der Waal Gases. Temperature of Inversion. Joule-Thomson Cooling.                
(8 Lectures) 
Suggested Books:
1. Thermodynamics By Enrico Fermi (Courier Dover Publications, 1956) 
2. A Treatise on Heat : Including Kinetic Theory of Gases, Thermodynamics and Recent 
Advances in Statistical Thermodynamics By Meghnad Saha, B. N. Srivastava (Indian 
Press, 1958) 
3. Heat and Thermodynamics: An Intermediate Textbook By Mark Waldo Zemansky, 
Richard Dittman (McGraw-Hill, 1981 
4. Thermal Physics by Garg, Bansal and Ghosh (Tata McGra-Hill, 1993) 
5. Thermodynamics, Kinetic Theory, and Statistical Thermodynamics by Francis W. 
Sears  & Gerhard L. Salinger.( Narosa, 1986). 32 
Paper-12-PHHT-310: Mathematics-I 
THEORY                Marks: 100 
Sequences of Real Numbers. Convergent, Cauchy, Monotonic and Bounded Sequences. 
Subsequences. Limit Superior and Limit Inferior of  a Sequence. Infinite Series and their 
Convergence. Comparison Test, Cauchy’s Root Test, D’ Alembert’s Ratio Test, Raabe’s Test, 
Cauchy’s Integral Test. Alternating Series and Leibnitz Test. Absolute and Conditional 
Convergence.     
                                                                                                          (16 Lectures) 
Functions of a Real Variable. Limits, Continuity and Differentiability of Functions. Uniform 
Continuity. Continuity on (a, b) implying Uniform Continuity and Boundedness. Intermediate 
Value Theorems and Taylor’s Theorem for Analytic Functions. Taylor’s and Mclauren’s 
Series of Elementary Analytic Functions.                                                                      (12 Lectures) 
Functions of two and three Real Variables, their Continuity  and Differentiability. Schwarz 
and Young’s Theorems, Implicit Function Theorem, Taylor’s Theorem. Maxima and 
Minima.    
                                                                                                                 (8 Lectures) 
Definition and Examples of Riemann Integral of a Bounded Function. Riemann Integrability 
of Continuous and Monotonic Functions. Riemann Integral as the Limit of a Sum. The 
Fundamental Theorem of Integral Calculus. Mean-value Theorems.   
                    (12 Lectures) 
Suggested References 
1. R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis (3
rd
 Edition), John Wiley and 
Sons (Asia) Pte. Ltd., Singapore, 2002.  
2. K. A. Ross,  Elementary analysis: the theory of calculus, Undergraduate Texts in 
Mathematics, Springer (SIE), Indian reprint, 2004. 33 
 Physics Lab III 
PRACTICALS             Marks: 100 
1 : Mechanical Equivalent of Heat
1. To determine J by Callender and Barne’s constant flow method. 
2 : Thermal Conductivity
1. To determine the Coefficient of Thermal Conductivity of Copper by Searle’s 
Apparatus. 
2. To determine the Coefficient of Thermal Conductivity of Copper by Angstrom’s 
Method. 
3. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and 
Charlton’s disc method. 
3 : Resistance Temperature Devices
1. To determine the Temperature Coefficient of Resistance  by Platinum Resistance 
Thermometer (PRT).  Assume . 
2. To calibrate a Resistance Temperature Device (RTD)  to measure temperature in a 
specified range using Null Method/ Off-Balance Bridge with Galvanometer based 
Measurement. 
4 : Thermocouples
1. To study the variation of Thermo-Emf of a Thermocouple with Difference of 
Temperature of its Two Junctions. 
2. To Calibrate a Thermocouple to measure Temperature in a Specified Range using (1) 
Null Method (2) Direct Measurement using an Op-Amp Difference Amplifier and to 
determine Neutral Temperature. 
Note
1. Each college should set up all the Practicals from the above list. 
2. Each student is required to perform at least 6 Practicals by taking at least 1 Practical 
from each of the units 305.1 to 305.4. 
Text and Reference Books
1. Geeta Sanon, BSc Practical Physics, 1
st
 Edn. (2007), R. Chand & Co. 
2. B. L. Worsnop and H. T. Flint, Advanced Practical Physics, Asia Publishing House, New Delhi. 
3. Indu Prakash and Ramakrishna, A Text Book of Practical Physics, Kitab Mahal, New Delhi. 
4. D. P. Khandelwal, A Laboratory Manual of Physics for  Undergraduate Classes, Vani 
Publication House, New Delhi.
5. Nelson and Jon  Ogborn, Practical Physics.34 
Paper-10-PHHP-308: Microprocessors & Computer Lab 
PRACTICALS                          Marks: 100
1 :  Assembly Language Programming (using 8 bit processor).
1. Addition and Subtraction of Numbers using Direct Addressing Mode. 
2. Addition and Subtraction of Numbers using Indirect Addressing Mode  
3. Multiplication by Repeated Addition. 
4. Division by Repeated Subtraction. 
5. Handling of 16-bit Numbers. 
6. Use of CALL and RETURN Instruction. 
7. Block Data Handling. 
8. Other Exercises (e.g. Parity Check etc.). 
  
2 :  C & C++ Programming
1. To evaluate a Polynomial :- (1) Converting Temperature from Fahrenheit to Celsius, (2) 
Area of a Circle, (3) Volume of Sphere etc. 
2. To find the Roots of a Quadratic Equation : Real and Distinct, Repeated and Imaginary. 
3. To locate a Number in a Given List (linear search).
4. (i) To find the Largest of Three Numbers. 
(ii) To find the Largest Number in a Given List of Numbers. 
5. (i) To check whether a Given Number is a Prime Number. 
(ii) To calculate the first 100 prime numbers. 
6.   To rearrange a List of Numbers in Ascending and Descending Order. 
7.   (i)  To calculate Factorial of a Number. 
(ii) To calculate the first few Factorials. 
8.    Manipulation of Matrices 
(i) To Add and Subtract two Matrices. 
(ii) To Multiply two Matrices. 
Suggested Books:
1. Microprocessor Architecture, Programming, and Applications with the 8085 By 
Ramesh S. Gaonkar, (Prentice Hall, 2002). 
2. Microprocessor Architecture, Programming, and Systems featuring the 8085 By 
William A. Routt, (Thomson Delmar Learning, 2006) 
3. Microprocessors and programmed Logic, 2
nd
 Edition by Kenneth L Short (P.H.I. , 
1988) 
4. Schaum's Outline of Programming with C++, McGraw-Hill; 2nd edition 
5. Numerical Recipes in C++: The Art of Scientific Computing , 
Cambridge University Press; 2 Edition 35 
Paper-13-PHHT-411:  Mathematical Physics-IV 
THEORY               Marks: 100 
  
Linear Vector Spaces 
Abstract Systems. Binary Operations and Relations.  Introduction to Groups and Fields. 
Vector Spaces and Subspaces. Linear Independence and Dependence of Vectors. Basis and 
Dimensions of a Vector Space. Homomorphism and Isomorphism of Vector Spaces. Linear 
Transformations. Algebra of Linear Transformations. Non-singular Transformations. 
Representation of Linear Transformations by Matrices.           
                                 (9 Lectures) 
Matrices 
Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar and Unit Matrices. 
Upper-Triangular and Lower-Triangular Matrices. Transpose of a Matrix. Symmetric and 
Skew-Symmetric Matrices. Conjugate of a Matrix. Hermitian and Skew-Hermitian Matrices.  
Singular and Non-Singular matrices. Adjoint of a Matrix. Inverse of a Matrix by Adjoint 
Method. Similarity Transformations. Orthogonal and  Unitary Matrices. Trace of a Matrix. 
Inner Product. 
                                                                                                              (6 Lectures) 
Eigen-values and Eigenvectors. Cayley- Hamiliton Theorem. Diagonalization of Matrices. 
Solutions of Coupled Linear Ordinary Differential Equations. Bilinear and Quadratic Forms. 
Functions of a Matrix. 
                                                                                                       (9 Lectures) 
Partial Differential Equations 
General Solution of Wave Equation in 1 Dimension. Transverse Vibrations of Stretched 
Strings. Oscillations of Hanging Chain. Wave Equation in 2 and 3 Dimensions. Vibrations of 
Rectangular and Circular Membranes. 
                                                                   (11 Lectures) 
Heat Flow in One, Two, and Three Dimensions. Heat Flow in Rectangular Systems of Finite 
Boundaries. Temperature inside Circular Plate.  Laplace Equation in Cartesian, Cylindrical 
and Spherical Coordinate Systems. Problems of Steady Flow of Heat in Rectangular and 
Circular Plate. 
                                                                                                           (13 Lectures) 36 
Suggested Books:
1. Matrices and Tensors in Physics by A.W.Joshi.(New Age Int.Pub., 1995). 
2. Linear Algebra Theory and Applications by Ward Cheney and David Kincaid (Jones & 
Bartlett) 
3. Vector Spaces and Matrices in Physics by M. C. Jain (Alpha Science International Ltd, 
2007). 
4. Partial Differential Equations for Scientists and Engineers By Stanley J. Farlow (Dover 
Publishers, 1993). 
5. Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Limited,1985) 
6. A Text Book of Differential Equations By N. M. Kapoor (Pitambar Publishing, 2006). 
7. Methods of Mathematical Physics: Partial Differential Equations by R.Courant 
&D.Hilbert.( New Delhi: Wiley India, 2008). 37 
Paper-14-PHHT-412: Optics 
THEORY                Marks: 100 
  
Geometrical Optics 
Fermat’s Principle :-  Optical Path. Fermat’s Principle of Least Time or Extremum Path. Examples of 
Fermat’s Principle:-  (1)  Reflection and  (2) Refraction.  
                                                              (1 Lecture) 
Lenses :- Transverse Magnification of a Spherically Refracting Surface. Lagrange and 
Helmholtz Laws of Magnification. Cardinal Points of a Coaxial Optical System. Graphical 
Construction of Image using Cardinal Points. Deviation produced by a Thin Lens. Equivalent 
Focal Length of Two Thin Lenses separated by a distance. Cardinal Points of a Coaxial 
System of Two Thin Lenses.  Thick Lenses. Focal Length of a Thick Lens. Variation of Focal 
Length of a Convex Lens with Thickness. Cardinal Points of a Thick Lens.              
(8 Lectures) 
Wave Optics 
Nature of Light :- Theories of Light. Electromagnetic Nature of Light   Definition of a Wave 
Front. Propagation of a Wave Front. Huygens Principle of Secondary Wavelets.                   
(3 Lecture) 
Interference 
Interference : Division of Amplitude and Division of Wavefront. Young’s Double Slit 
Experiment. Lloyd’s Mirror and Fresnel’s Biprism. Phase Change on Reflection :  Stoke’s 
treatment.. Interference in Thin Films : Parallel and Wedge-shaped Films. Fringes of Equal 
Inclination (Haidinger Fringes) and Fringes of Equal Thickness (Fizeau Fringes). Newton’s 
Rings : Measurement of Wavelength and Refractive Index.                                   
(10 Lectures) 
Michelson’s Interferometer:- (1) Idea of form of fringes (No Theory required), (2) 
Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, (5) 
Standardization of Meter and (6) Visibility of Fringes.                                              
(4 Lectures) 
Coherence :- Temporal  and Spatial Coherence. Theory of Partial Coherence. Coherence 
Time and Coherence Length. Purity of a Spectrum Line.  
                                            (2 Lectures) 38 
Diffraction 
Fresnel diffraction:-   Fresnel’s Assumptions. Fresnel’s Half-Period   Zones  for   Plane  
Wave.   Explanation  of Rectilinear  Propagation of Light.    Theory  of  a  Zone Plate:  
Multiple Foci of a Zone Plate.   Comparison  of  a   Zone  plate  with a Convex lens. 
Diffraction due to  (1) a Straight Edge and  (2) a  Rectangular Aperture (Slit),  (3) a Small 
Circular Aperture and  (4) an Oopaque Circular Disc.  Fresnel’s Integrals, Cornu’s Spiral : 
Fresnel Diffraction Pattern due to  (1) a Straight Edge,  (2) a Slit, and (3) a Wire (Qualitatively 
using Cornu’s Spiral). 
                                                                                                                (12 Lectures) 
Fraunhofer diffraction : Diffraction due to  (1) a Single Slit,  (2) a Double Slit and  (3) a Plane 
Transmission Grating. Rayleigh’s criterion of resolution. Resolving Power and Dispersive 
Power of a Plane Diffraction Grating.  
                                                                          (6 Lectures) 
Holography :  Principle of Holography. Recording and Reconstruction Method. Theory of 
Holography as Interference between two Plane Waves.
                                             (2 Lectures) 
Suggested Books :
1. Fundamentals of Optics By Francis Arthur Jenkins and Harvey Elliott White (McGrawHill, 1976) 
2. Optics by Ajoy Ghatak (Tata McGraw Hill, 2008) 
3. Optics By Eugene Hecht and A R Ganesan (Pearson Education, 2002) 
4. Light and Optics: Principles and Practices by Abdul Al-Azzawi (CRC Press, 2007) 
5. Contemporary Optics by A. K. Ghatak &  K. Thyagarajan.(Plenum Press,1978). 
6. Introduction to Optics by Khanna and Gulati39 
Paper-15-PHHT-413: Mathematics-II (Analysis & Statistics)
THEORY                Marks: 100 
Analysis 
Sequences and Series of Functions of Real Variable. Pointwise and Uniform Convergence. 
Weirstrass M-test. Uniform Convergence and Continuity. Uniform Convergence and 
Differentiation. Uniform Convergence and Integration. Weirstrass Approximation Theorem. 
Power Series and their Convergence and Uniform Convergence. Definition of Exponential, 
Logarithmic and Trigonometric Functions by means of Power Series.                     
(14 Lectures) 
Improper Integrals and their Convergence. Comparison, Abel’s and Dirichlet’s Tests. Beta 
and Gamma Functions and their Properties. Differentiation under the Sign of Integration.  
                                                                                                                (10 Lectures) 
Statistics (35)  
Random Variables. Discrete and Continuous Random Variables. Distribution Function. 
Expectation of a Random Variable. 
                                                                            (4 Lectures) 
Discrete and Continuous Distribution. Binomial, Poisson, Geometric, Normal and 
Exponential Distributions. Bivariate Distribution.  Conditional Distribution and Marginal 
Distribution. Correlation and Regression for Two Variables only. 
                          (10 Lectures) 
Statistical Inference: Definitions of Random Sample, Parameter and Statistic. Concept of 
Sampling Distribution and Standard Error. Sampling  Distribution of Mean Variance of 
Random Sample from a Normal Population. Tests of Significance based on t, F and chisquare distributions. 
                                                                                                   (10 Lectures) 
Suggested References: 
1.  Sudhir R. Ghorpade and Balmohan V. Limaye, A Course in Calculus and Real Analysis, 
Undergraduate Texts in Mathematics, Springer (SIE), Indian reprint, 2006. 
2.  Robert V. Hogg, Joseph W. McKean and Allen T. Craig, Introduction to Mathematical 
Statistics, Pearson Education, Asia, 2007. 
3. Irwin Miller and Marylees Miller,  John E. Freund’s Mathematical Statistics with 
Applications (7th Edition), Pearson Education, Asia, 2006. 40 
Paper-16-PHHT-414: Numerical Analysis 
THEORY               Marks: 100 
Errors and Iterative Methods 
Truncation and Round-off Errors. Floating Point Computation. Overflow and Underflow.  
Single and Double Precision Arithmetic. Iterative Methods.  
                                   (2 Lectures) 
Solution of Algebraic and Transcendental Equations 
(1) Fixed-Point Iteration Method, (2) Bisection Method, (3) Secant Method, (4) NewtonRaphson Method, and (5) Generalized Newton’s Method. Comparison and Error Estimation. 
                                                                                                                  (5 Lectures)
Matrices and Linear System of Equations 
Solution of Linear Equations :- (1) Gauss Elimination Method and (2) Gauss-Seidel Iterative 
Method.         
                                                                                                                 (3 Lectures) 
Eigenvalues and Eigenvectors :- Computation of Eigenvalues and Eigenvectors of Matrices  
by using Iterative Methods.   
                                                                                             (3 Lectures) 
Interpolation 
Interpolation :- Forward and Backward Differences.  Symbolic Relation. Differences of a 
Polynomial. Newton’ Forward and Backward Interpolation Formulas. Divided Differences. 
Newton’s General Interpolation Formula. 
                                                                  (8 Lectures) 
Curve Fitting, B-Splines and Approximation 
Curve Fitting by Least Square Methods : (1) Fitting a Straight Line. (2) Non-Linear Curve 
Fitting : (a) Power Function, (b) Polynomial of nth Degree, and (c) Exponential Function. (3) 
Linear Weighed Least Square Approximation. Orthogonal Polynomials. Gram-Schmidt 
Orthogonalization Process. Cubic B-Splines. Least-Squares Solution. Representation of BSplines through Divided Differences. Approximation of Functions. Chebyshev Polynomials. 
                                                                                                                  (8 Lectures) 
Numerical Differentiation 
Numerical Differentiation using (1) Newton’s Interpolation Formulas and (2) Cubic Spline 
Method.  Errors in Numeric Differentiation. Maximum and Minimum Values of a Tabulated 
Function. 
                                                                                                                  (4 Lectures) 41 
Numerical Integration 
General Quadrature Formula. Trapezoidal Rule. Simpson's 1/3 and 3/8 Rules. Weddle’s 
Rule. Gauss Quadrature Formulas : (1) Gauss- Hermite and (2) Gauss-Legendre Formulas. 
                                                                                                                  (7 Lectures) 
Solution of Ordinary Differential Equations (ODE’s)  
First Order ODEs :- Solution of Initial Value Problems : (1) Euler’s Method, (2) Modified 
Eulers’s Method, (3) Runge-Kutta Method of Second Order with Error Estimation.  
(6 Lectures) 
Second Order ODEs. :- Solution of 2-Point Boundary  Value Problems. Finite Difference 
Approximation of Derivatives. Finite Differnce Method.      
                                        (2 Lectures) 
Suggested Books:
1. Introductory Methods of Numerical Analysis 4
th
 Ed. By S.S. Sastry (PHI Learning Pvt. 
Ltd., 2006) 
2. Numerical Mathematical Analysis by James D. Scarborough (sisth Edition), Oxford & 
IBH Publishing 
3. Elementary Numerical Analysis By Kendall E. Atkinson (Wiley, 1985) 
6. Numerical Methods for Scientists and Engineers By Richard Wesley Hamming 
(Courier Dover Publications, 1986)  
7. Schaum's Outline of Programming with C++, McGraw-Hill; 2
nd
  Edition 
8. Numerical Recipes in C++: The Art of Scientific Computing , Cambridge University 
Press; 2
nd
  Edition. 42 
 Physics Lab IV 
PRACTICALS                          Marks: 100
1 : Reflection, Refraction and Dispersion
1. To determine the Refractive Index of the Material of a given Prism using Sodium 
Light. 
2. To determine the Refractive Index of a Liquid by Total Internal Reflection using 
Wollaston’s Air-film. 
3. To determine the Refractive Index of (1) Glass and  (2) a Liquid by Total Internal 
Reflection using a Gaussian Eyepiece. 
4. To determine the Dispersive Power of the Material of a given Prism using Mercury 
Light. 
5. To determine the value of Cauchy Constants. 
6. To determine the Resolving Power of a Prism. 
2 : Interference
1. To determine wavelength of sodium light using Fresnel Biprism. 
2. To determine wavelength of sodium light using Newton’s Rings. 
3. To determine the Thickness of a Thin Paper by measuring the Width of the 
Interference Fringes produced by a Wedge-Shaped Film. 
4. To determination Wavelength of Sodium Light using Michelson’s Interferometer. 
3 : Diffraction
1. To determine the Diameter of a Thin Wire by studying the Diffraction Produced by it. 
2. To determine the wavelength of Laser light using Diffraction of Single Slit. 
3. To determine the wavelength of (1) Sodium and  (2)  Mercury Light using Plane 
Diffraction Grating. 
4. To determine the Dispersive Power of a Plane Diffraction Grating. 
5. To determine the Resloving Power of a Plane Diffraction Grating. 
6. To determine the (1) Wavelength and (2) Angular Spread of He-Ne Laser using Plane 
Diffraction Grating. 
7. To study the Polarization of Light by Reflection and to determine the Polarizing 
Angle for air-glass interface.  
8. To measure the Intensity using Photosensor and Laser in diffraction patterns of 
single and double slits. 
Note
1. Each college should set up at least 14 Practicals from the above list. 
2. Each student is required to perform 8 Practicals by taking at least 2 Practicals from 
each of the three units 405.1 to 405.3 
Text and Reference Books
1. Geeta Sanon, BSc Practical Physics, 1
st
 Edn. (2007), R. Chand & Co. 43 
2. B. L. Worsnop and H. T. Flint, Advanced Practical Physics, Asia Publishing House, New 
Delhi. 
3. Indu Prakash and Ramakrishna, A Text Book of Practical Physics, Kitab Mahal, New 
Delhi. 
4. D. P. Khandelwal, A Laboratory Manual of Physics for Undergraduate Classes, Vani 
Publication House, New Delhi. 
5. Nelson and Jon  Ogborn, Practical Physics. 44 
PHHP-414: Numerical Analysis Lab 
PRACTICALS                          Marks: 100
1 :  Algebraic & Transcendental Equations
1. To find the Roots of an Algebraic Equation by Bisection Method. 
2. To find the Roots of an Algebraic Equation by Secant Method. 
3. To find the Roots of an Algebraic Equation by Newton-Raphson Method. 
4. To find the Roots of a Transcendental Equation by Newton-Raphson Method . 
2 :  Linear Equations & Eigenvalue Problem
1. To find the Roots of Linear Equations by Gauss Elimination Method. 
2. To find the Roots of Linear Equations by Gauss-Seidal Iterative Method. 
3. To find the Eigenvalue and Eigenvector of a Matrix by Iterative Method. 
3 :  Interpolation
1. To form a Forward Difference Table from a Given set of Data Values. 
2. To form a Backward Difference Table from a Given Set of Data Values. 
3. To find the value of y near the beginning of a Table of values of (x, y). 
4. To find the value of y near the end of a Table of values of (x, y). 
4 :  Curve Fitting, B-Splines & Approximation
1. To fit a Straight Line to a given Set of Data Values. 
2. To fit a Polynomial to a given Set of Data Values. 
3. To fit an Exponential Function to a given Set of Data Values. 
4. To fit a natural Cubic B-Spline to a given Data. 
5 :  Differentiation
1. To find the First and Second Derivatives near the beginning of a Table of values of (x, 
y). 
2. To find the First and Second Derivatives near the end of a Table of values of (x, y). 
6 :  Integration
1. To evaluate a Definite Integral by Trapezoidal Rule. 
2. To evaluate a Definite Integral by Simpson’s 1/3 Rule. 
3. To evaluate a Definite Integral by Simpson’s 3/8 Rule. 
4. To evaluate a Definite Integral by Gauss Quadrature Formula.
7 :  Differential Equations
1. To solve a Differential Equation by Euler’s Method.
2. To solve a Differential Equation by Modified Euler’s Method. 
3. To solve a Differential Equation by Second Order Runge Kutta Method. 
4. To solve a Differential Equation by Fourth Order Runge Kutta Method. 45 
Note 
1. The above Problems are to be programmed in C/C++. 
2. The above Problems can also be solved by using appropriate computer softwares.  
3. Each Student is required to write and run at least 14 Programs by taking at least 2 
Problems from each of the units from 405.1 to 405.7. 
Suggested Books:
1. Introductory Methods of Numerical Analysis 4
th
 Ed. By S.S. Sastry (PHI Learning Pvt. 
Ltd., 2006) 
2. Numerical Mathematical Analysis by James D. Scarborough (sisth Edition), Oxford & 
IBH Publishing 
3. Elementary Numerical Analysis By Kendall E. Atkinson (Wiley, 1985) 
4. Numerical Methods for Scientists and Engineers By Richard Wesley Hamming 
(Courier Dover Publications, 1986) 
5. Schaum's Outline of Programming with C++, McGraw-Hill; 2nd edition 
6. Numerical Recipes in C++: The Art of Scientific Computing ,  Cambridge University 
Press; 2 Edition 
Paper-17-PHHT-515: Mathematical Physics-V 46 
THEORY                               Marks: 100 
Integral Transforms 
Fourier Transforms (FTs):- Fourier Integral Theorem. Sine and Cosine Transforms. Properties 
of FTs: (1) FTs of Derivatives of Functions, (2) Change of Scale Theorem, (3) FTs of Complex 
Conjugates of Functions,  (4) Shifting Theorem, (5) Modulation Theorem,  (6) Convolution 
Theorems, and (7) Parseval’s Identity. 
                                                    (6 Lectures) 
Laplace Transforms (LTs) :-  Existence Theorem. LTs of Elementary Functions. Properties of 
LTs : (1) Change of Scale Theorem, (2) Shifting Theorem, (3) LTs of Derivatives and Integrals 
of Functions, (4) Derivatives and Integrals of LTs, (5) LT of Unit Step function, (6) LTs of 
Periodic Functions, and (6) Convolution Theorem. Inverse LT (Bromwich Integral). 
                                                                                                                  (9 Lectures) 
Applications of Laplace Transforms :- (1) Solution  of First and Second Order ODEs, (2) 
Solution of Simultaneous First Order ODEs,   (3) Solution of One-Dimensional PDEs : Wave 
and Diffusion Equations, (4) Evaluation of Definite Integrals.     
                                (6 Lectures) 
Dirac Delta Function 
Definition, Representation and Properties of Dirac  Delta Function. Fourier and Laplace 
Transforms.                                                                                                                  (3 Lectures) 
Cartesian Tensors 
Transformation of Co-ordinates. Einstein’s Summation Convention. Relation between 
Direction Cosines. Tensors. Algebra of Tensors. Sum, Difference and Product of Two 
Tensors. Contraction. Quotient Law of Tensors. Symmetric and Anti-symmetric Tensors. 
Pseudotensors. Invariant Tensors : Kronecker and Alternating Tensors. Association of 
Antisymmetric Tensor of Order Two and Vectors. Vector Algebra and Calculus using 
Cartesian Tensors : Scalar and Vector Products, Scalar and Vector Triple Products. 
Differentiation. Gradient, Divergence and Curl of Tensor Fields. Vector Identities. Tensorial 
Formulation of Analytical Solid Geometry : Equation of a Line. Angle Between Lines. 
Projection of a Line on another Line. Condition for Two Lines to be Coplanar. Foot of the 
Perpendicular from a Point on a Line. Rotation Tensor (No Derivation). Isotropic Tensors. 
Tensorial Character of Physical Quantities. Moment  of Inertia Tensor. Stress and Strain 
Tensors : Symmetric Nature. Elasticity Tensor. Generalized Hooke’s Law.   
                                                                                                                (14 Lectures) 47 
General Tensors 
Transformation of Co-ordinates. Contravariant and Covariant Vectors. Contravariant, 
Covariant and Mixed Tensors. Kronecker Delta and Permutation Tensors. Algebra of 
Tensors. Sum, Difference and Product of Two Tensors. Contraction. Quotient Law of 
Tensors. Symmetric and Anti-symmetric Tensors. Metric Tensor. Reciprocal Tensors. 
Associated Tensors. Christoffel Symbols of First and Second Kind and their Transformation 
Laws. Covariant Derivative. Tensor Form of  Gradient, Divergence and Curl.    
    (10 Lectures) 
Suggested Books:
1. Vector Analysis and Cartesian Tensors, 3ed By D. E. Bourne, P C Kendall (Chapman & 
Hall, 1992) 
2. Matrices and tensors in physics by A.W.Joshi.(New Age International Publications, 
1995). 
3. Vector Analysis and Cartesian Tensors, 3ed By D. E. Bourne, P C Kendall (Chapman & 
Hall, 1992) 
Paper-18-PHHT-516: Quantum Mechanics 
THEORY          Marks: 100 
Particles and Waves 
Inadequacies in Classical Physics. Blackbody Radiation : Quantum Theory of Light. 
Photoelectric Effect. Compton Effect. Franck-Hertz experiment. Wave Nature of Matter : De 
Broglie Hypothesis. Wave-Particle Duality. Davisson-Germer Experiment. Wave description 
of Particles by Wave Packets. Group and Phase Velocities and Relation between them. TwoSlit Experiment with Electrons. Probability. Wave Amplitude and Wave Functions. 48 
Heisenberg’s Uncertainty Principle (Uncertainty Relations involving Canonical Pair of 
Variables) : Derivation from Wave Packets. γ-ray Microscope. 
                                                                                                                (20 Lectures) 
Quantum Mechanics 
Basic Postulates and Formalism :- Energy, Momentum and Hamiltonian Operators.  
Time-independent Schrödinger Wave Equation for Stationary States. Properties of Wave 
Function. Interpretation of Wave Function. Probability Density and Probability. Conditions 
for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition 
Principles.  Eigenvalues and Eigenfunctions.  Expectation Values. Wave Function of a Free 
Particle.   
(8 Lectures)
Applications of Schrödinger Wave Equation:  
Eigen Functions and Eigenvalues for a Particle in a One Dimensional Box.  
(2 Lectures) 
Bound State Problems :- General Features of a Bound Particle System, (1) One Dimensional 
Simple Harmonic Oscillator : Energy Levels and Wave Functions. Zero Point Energy, (2) 
Quantum Theory of Hydrogen Atom : Particle in a Spherically Symmetric Potential. 
Schrodinger Equation. Separation of Variables. Radial Solutions and Principal Quantum 
Number, Orbital and Magnetic Quantum Numbers. Quantization of Energy and Angular 
Momentum. Space Quantization. Electron Probability  Density. Radiative Transitions. 
Selection Rules.  
                                                                                                                (12 Lectures) 
Scattering Problems in One Dimension :- (1) Finite  Potential Step : Reflection and 
Transmission. Stationary Solutions. Probability Current. Attractive and Repulsive Potential 
Barriers. (2)  Quantum Phenomenon of Tunneling : Tunnel Effect. Tunnel Diode (Qualitative 
Description). (3) Finite Potential Well (Square Well).   
                                                                                                                  (6 Lectures) 
Suggested Books:
1. L. I. Schiff, Quantum Mechanics, 3
rd
 edition, (McGraw Hill Book Co., New York 1968). 
2. E. Merzbacher, Quantum Mechanics, 3
rd
 edition, (John Wiley & Sons, Inc1997) 
3. J.L. Powell & B. Crasemann, Quantum Mechanics, (Addison-Wesley Pubs.Co.,1965) 
4. A. Ghatak & S. Lokanathan, Quantum Mechanics: Theory and Applications, 5
th
 Edition, 
(Macmillan India , 2004) 
5. E. M. Lifshitz and L. D. Landau, Quantum Mechanics: Non-Relativistic Theory (Course of 
Theoretical Physics, Vol 3), 3
rd
 Edition, Butterworth-Heinemann (1981). 
6. Quantum Mechanics: Foundations and Applications by Arno Bohm.--3rd ed.—(New 
York: Springer-Verlag, 2003).49 
Paper-19-PHHT-517:  Atomic and Molecular Physics
THEORY               Marks:  100
  
Determination of e/m of the Electron. Thermionic Emission. Isotopes and Isobars.  
                                                                                                                  (5 Lectures) 
X-rays :- Ionizing Power, X-ray Diffraction, Bragg’s Law. Bohr Atomic Model, Critical 
Potentials, X-rays-Spectra: Continuous and Characteristic X-rays, Moseley Law.  
                                                                                                                                
(7 Lectures)
Atoms in Electric and Magnetic Fields :- Electron Angular Momentum. Space Quantization. 
Electron Spin and Spin Angular Momentum. Larmor’s Theorem. Spin Magnetic Moment. 
Stern-Gerlach Experiment. Zeeman Effect: Electron Magnetic Moment and Magnetic 
Energy, Gyromagnetic Ratio and Bohr Magneton.    
                                                     (5 Lectures) 
Atoms in External Magnetic Fields :- Normal and Anomalous Zeeman Effect. Paschen Back 
and Stark Effect (Qualitative Discussion only).   
                                                             (4 Lectures) 
Many electron atoms :-  Pauli’s Exclusion Principle. Symmetric and Antisymmetric Wave 
Functions. Periodic table. Fine structure.  Spin orbit coupling. Spectral Notations for Atomic 
States. Total Angular Momentum. Vector Model. L-S and J-J couplings. Hund’s Rule. Term 
symbols. Spectra of Hydrogen and Alkali Atoms (Na etc.).                    
                                                                          (10 Lectures) 
Molecular Spectra :- Rotational Energy levels, Selection Rules and Pure Rotational Spectra of 
a Molecule. Vibrational Energy Levels, Selection Rules and Vibration Spectra. RotationVibration Energy Levels, Selection Rules and Rotation-Vibration Spectra. Determination of 
Internuclear Distance.    
                                                                           (9 Lectures) 
Raman Effect :- Quantum Theory of Raman Effect. Characteristics of Raman Lines. Stoke’s 
and Anti-Stoke’s Lines. Complimentary Character of Raman and infrared Spectra.                                                                 
                                               (4 Lectures) 
Lasers :- Einstein’s A and B coefficients. Metastable states. Spontaneous and Stimulated 
emissions. Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. 
Ruby Laser and He-Ne  Laser.    
                                                         (4 Lectures) 
Suggested Books:
1. Concepts of Modern Physics by Arthur Beiser (McGraw-Hill Book Company, 1987) 50 
2. Atomic physics by J.B.Rajam & foreword by Louis De Broglie.( S.Chand & Co., 2007). 
3. Atomic Physics by J.H.Fewkes & John Yarwood. Vol. II (Oxford Univ. Press, 1991). 
4. Physics of Atoms and Molecules,  Bransden and Joachein. 
5. Molecular Spectroscopy,  Banwell. 
6. Optoelectronics by Ghatak and Thyagarajan 
7. Principles of Lasers by Svelto 
Paper-20-PHHT-518:  Electronic Devices 
  
THEORY                                                Marks: 100
   
Circuit Analysis :-  Kirchhoff’s Laws,  Mesh and Node Analysis of dc and ac Circuits, Duality in 
Networks, Equivalent Star (T) and delta (π) Networks  of a Given Network, Star to Delta and 51 
Delta to Star Conversion. Wheatstone Bridge and its Applications to Wein Bridge and 
Anderson Bridge.  
                                                                                                                (6 Lectures) 
Semiconductor Diodes :– p and n Type Semiconductors. Energy Level Diagram. Conductivity 
and Mobility. pn Junction Fabrication (Simple Idea). Barrier Formation in pn Junction Diode. 
Current Flow Mechanism in Forward and Reverse Biased Diode (Recombination, Drift and 
Saturation of Drift Velocity). Derivation of Mathematical Equations for Barrier Potential, 
Barrier Width and Current for Step Junction. pn junction and its characteristics. Static and 
Dynamic Resistance. Diode Equivalent Circuit.  Ideal Diode. Load Line Analysis of Diodes. 
Load Line and Q-point.              
                                                                                   (5 Lectures) 
Two-terminal Devices and their Applications :- (1)  Rectifier Diode. Half-wave Rectifiers. 
Centre-tapped and Bridge Full-wave Rectifiers Calculation of Ripple Factor and Rectification 
Efficiency. Qualitative idea of C, L and π - Filters.  (2) Zener Diode and Voltage Regulation.  
(3) Photo Diode, (4) Tunnel Diode, (5) LED (6) Varactor Diode.        
  (4 Lectures) 
Bipolar Junction transistors :- n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC 
Configurations. Current gains α, β and γ and Relations between them. Load Line Analysis of 
Transistors.  DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff, 
and Saturation Regions. Transistor in Active Region and Equivalent Circuit.       
     (6 Lectures) 
Amplifiers : –  Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider 
Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of a single-stage 
CE amplifier using Hybrid Model.  Input and Output  Impedance. Current, Resistance, 
Voltage and Power Gains. Class A, B, and C Amplifiers.  
                                              (8 Lectures) 
Coupled Amplifiers :-  RC-Coupled Amplifier and its Frequency Response of Voltage Gain. 
                                                                                                                  (2 Lectures) 
Feedback in Amplifiers, Effects of Positive and Negative Feedback on Input Impedance, 
Output Impedance and Gain, Stability, Distortion and Noise.   
                                 (3 Lectures) 
Sinusoidal Oscillators :- Barkhauson’s Criterion for Self-sustained Oscillations. RC Phase Shift 
Oscillator, Determination of Frequency. Hartley Oscillator.  Colpitts  
Oscillator.  
                                                                                                                  (3 Lectures) 
Non-Sinusoidal Oscillators – Astable and Monostable Multivibrators.             
         (3 Lectures) 
Three-terminal Devices (UJT and FETs) :-  (1) UJT : Its Chararacteristics and Equivalent 
Circuit. Relaxation Oscillator, (2) JEFT : Its Characteristics and Equivalent Circuit. Advantages 
of  JFET. MOSFET (Qualtiative Discussion only).    52 
                                                    (4 Lectures) 
Modulation and Demodulation:- Types of Modulation. Amplitude Modulation. Modulation 
Index. Analysis of Amplitude Modulated Wave. Sideband Frequencies in AM Wave. CE 
Amplitude Modulator. Demodulation of AM Wave using Diode Detector.  Idea of Frequency, 
Phase, and Digital Modulation.    
                                                                                      (4 Lectures) 
Suggested Books:  
1. Robert Boylestad, Louis Nashelsky, Electronic Devices and Circuit Theory, 8
Th
Edition, Pearson Education, India, 2004. 
2. A. P. Malvino, Electronic Principals, Glencoe, 1993. 
3. John Morris, Analog Electronics. 
4. Allen Mottershead, Electronic Circuits and Devices, PHI, 1997. 
5. Solid state electronic devices By Ben G. Streetman & Sanjay Banerjee, Pearson 
Prentice Hall, 2006. 
6. Basic Electronics & Linear Circuits By N. N. Bhargava, D. C. Kulshreshtha & SC 
Gupta, Tata McGrawHill, 2006 53 
 Physics Lab V 
PRACTICALS                          Marks: 100
1 : Determination of Fundamental Constants 
1. To determine the value of Boltzmann Constant by studying Forward Characteristics 
of a Diode. 
2. To determine the value of Planck’s Constant by using a Photoelectric Cell. 
3. To determine the value of Planck’s Constant by using LEDs of at least 4 Different 
Wavelengths. 
2 : Atomic & Molecular Physics
1. To determine the value of e/m by (a) Magnetic Focussing or (b) Bar Magnet.To 
determine the wavelengths of Hydrogen spectrum and  hence to determine the 
value of Rydberg’s Constant. 
2. To determine the Wavelength of H-alpha Emission Line of Hydrogen Atom. 
3. To determine the Absorption Lines in the Rotational Spectrum of Iodine Vapour. 
3 : Miscellaneous
1. To determine the Wavelength and the Angular Spread of a He-Ne Laser. 
2. To determine the value of Stefan’s Constant. 
3. To determine the Wavelength and the Velocity of Ultrasonic Waves in a liquid 
(Kerosene Oil, Xylene, etc.) by studying the Diffraction of light through an Ultrasonic 
Grating. 
Note
1. Each College should set up all the Practicals from the above list. 
2. Each Student is required to perform 6 Practicals by taking at least 1 Practical from 
each of the units 505.1 to 503.3. 
Text and Reference Books
1. Geeta Sanon, BSc Practical Physics, 1
st
 Edn. (2007), R. Chand & Co. 
2. B. L. Worsnop and H. T. Flint, Advanced Practical Physics, Asia Publishing House, New 
Delhi. 
3. Indu Prakash and Ramakrishna, A Text Book of Practical Physics, Kitab Mahal, New 
Delhi. 
4. D. P. Khandelwal, A Laboratory Manual of Physics for Undergraduate Classes, Vani 
Publication House, New Delhi. 
5. Nelson and Jon  Ogborn, Practical Physics. 54 
 Physics Lab VI 
PRACTICALS                          Marks: 100
1 : Networks 
  
1. To verify the Thevenin, Norton, Superposition, and Maximum Power Transfer Theorem 
2. To measure the Input and Output Impedance of an Unknown Network and to convert it into 
Equivalent T and Pi Circuits. 
2 :  Power supply 
1. To study (a) Half-wave Rectifier and (b) Full-wave Bridge Rectifier and investigate the effect 
of C, L and π filters. 
2. To design a Semiconductor Power Supply of given rating using (a) Half wave, (b) Full wave or 
(c) Bridge rectifier and investigate the effect of C-filter. 
3. To study the Forward and Reverse characteristics of a Zener Diode and to study its use as a 
Voltage Regulator. 
4. To investigate simple regulation and stabilization circuits using Voltage Regulator ICs.  
  
3 : Transducers 
  
1. To determine the Characteristics of p-n junction of a Solar Cell. 
2. To study the Characteristics of a Photo-diode. 
3. To determine the Coupling Coefficient of a Piezoelectric crystal. 
4 : Transistor Applications 
1. To study the CE Characteristics of a Transistor. 
2. To study the various Transistor Biasing Configurations.
3. To design a CE Amplifier of a given gain (mid-gain) using Voltage Divider Bias. 
4. To study the Frequency Response of Voltage Gain of a RC-Coupled Amplifier. 
5. To design an Oscillator of given specifications using Transistors. 
6. To study the Characteristics of a FET and design a common source amplifier. 
Note
1. Each college should set up all the Practicals from the above list. 
2. Each student is required to perform at least 8 Practicals by taking at least 2 Practicals 
from each of the units 506.1 to 506.3. 
3. The students should be encouraged to do practicals  by using Breadboard or 
softwares like PSpice wherever possible. 
Text and Reference Books
1. Geeta Sanon, BSc Practical Physics, 1
st
 Edn. (2007), R. Chand & Co. 
2. Nelson and Jon Ogborn, Practical Physics. 
3. Adrian C. Melissinos, Jim Napolitano, Experiments in Modern Physics. 
4. Paul B. Zbar and Albert B. Malvino, Basic Electronics (A Text-Lab Manual), Tata 
McGraw Hill. 
5. A. P. Malvino, Electronics. 
6. John Morris, Analog Electronics. 
7. A P Malvino and D P Leach, Digital Principles and Applications. 55 
Paper-21-PHHT-619: Electromagnetic Theory 
THEORY               Marks: 100 
Maxwell’s Equations  
Maxwell Equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: 
Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave 
Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. 
Electromagnetic Energy Density. Physical Concept of  Electromagnetic Field Energy Density, 
Momentum Density and Angular Momentum Density.                       
   (12 Lectures) 
Reflection and Refraction of Electromagnetic Waves 
Reflection and Refraction of a Plane Wave at a Plane Interface between Dielectics. Fresnel Formulae. 
Total Internal Reflection. Brewster’s Angle. Waves in Conducting Media. Metallic Reflection (Normal 
Incidence). Skin Depth. Maxwell’s Equations in Microscopic Media (Plasma). Characteristic Plasma 
Frequency. Refractive Index. Conductivity of an Ionized Gas. Propagation of e.m. Waves in 
Ionosphere.   
                                                                (12 Lectures) 
Polarization of Electromagnetic Waves 
Description of Linear, Circular and Elliptical Polarization. Propagation of e.m. Waves in Anisotropic 
Media. Symmetric Nature of Dielectric Tensor. Fresnel’s Formula. Uniaxial and Biaxial Crystals. Light  
Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. 
Ordinary and Extraordinary Refractive Indices. Production and Detection of Plane, Circularly  and 
Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet 
Compensator and its Uses. Analysis of Polarized Light.    
                                                                                                       (10 Lectures) 
Rotatory Polarization:- Optical Rotation. Biot’s Laws for Rotatory Polarization. Fresnel’s 
Theory of Optical Rotation. Calculation of Angle of Rotation. Experimental Verification of 
Fresnel’s Theory. Specific Rotation. Laurent’s Half-Shade Polarimeter.   
                 (5 Lectures) 
Wave Guides 
Planar Optical Wave Guides. Planar Dielectric Wave  Guide. Condition of Continuity at 
Interface. Phae Shift on Total Reflection. Einenvalue Equations. Phase and Group Velocity of 
the Guided Waves. Field Energy and Power Transmission.    
                                      (6 Lectures) 56 
Optical Fibres :- Numerical Aperture. Step and Graded Indices (Definitions Only). Single and 
Multiple Mode Fibres (Concept and Definition Only).  
                                             (3 Lectures) 
Suggested Books:
1. Introduction to Electrodynamics by A.Z.Capri  & P.V.Panat.(New Delhi: Narosa 
Pub.House, 2002). 
2. Electromagnetics by Joseph A.Edminister 2nd ed.(New Delhi: Tata Mc Graw Hill, 
2006). 
3. Fundamentals of electromagnetics by M.A.W.Miah.(Tata Mc Graw Hill,1992) 
4. Applied electromagnetism By Liang Chi Shen, Jin Au Kong ( PWS Pub. Co., 1995) 
5. David J. Griffiths, Introduction to Electrodynamics, 3
rd
 edition, (Benjamin          
Cummings 1998). 
6. J. D. Jackson, Classical Electrodynamics, 3
rd
 edition, (Wiley, New York 1998) 
7. M. Lifshitz and L. D. Landau, Classical Theory of Fields (Course of Theoretical 
Physics), 2
nd
 Edition, (Pergamon Pr; 1981). 57 
Paper-22-PHHT-620: Statistical Physics 
THEORY               Marks: 100 
Classical Statistics 
Entropy and Thermodynamic Probability. Maxwell-Boltzmann Distribution Law. Ensemble 
Concept. Partition Function. Thermodynamic Functions of Finite Number of Energy Levels. 
Negative Temperature. Thermodynamic Functions of an Ideal Gas. Classical Entropy 
Expression, Gibbs Paradox. Law of Equipartition of  Energy – Applications to Specific Heat 
and its Limitations.   
                                                                                                    (16 Lectures) 
  
Classical Theory of Radiation 
Properties of Thermal Radiation. Blackbody Radiation. Pure Temperature Dependence. 
Kirchhoff’s Law. Stefan-Boltzmann Law and Wien’s Displacement law. Saha’s Ionization 
Formula.     
                                                                                                                (4 Lectures) 
Quantum Theory of Radiation 
Radiation :- Stefan-Boltzmann Law: Thermodynamic Proof. Radiation Pressure. Spectral 
Distribution of Black Body Radiation. Wien’s Distribution Law and Displacement Law. 
Rayleigh-Jean’s Law. Ultraviolet Catastrophe. Planck’s Quantum Postulates. Planck’s Law of 
Blackbody Radiation : Experimental Verification.  Deduction of (1) Wien’s Distribution Law, 
(2) Rayleigh-Jeans Law, (3) Stefan-Boltzmann Law and (4) Wien’s Displacement Law from 
Planck’s Law.  
                                                                                                           (8 Lectures) 
Bose-Einstein Statistics 
B-E distribution law. Thermodynamic functions of a  Completely Degenerate Bose Gas.  
Bose-Einstein condensation, properties of liquid He (qualitative description). Radiation as 
photon gas. Bose’s derivation of Planck’s law.             
  (10 Lectures) 
Fermi-Dirac Statistics 
Fermi-Dirac Distribution Law. Thermodynamic functions of an ideal Completely Degenerate 
Fermi Gas. Fermi Energy.  Electron gas in a Metal.  Specific Heat of Metals. White Dwarf 
Stars. Chandrasekhar Mass Limit.    
                                                                                   (10 lectures) 58 
Suggested Books:
1. Statistical Physics : Berkeley Physics Course Volume 5 by F Reif (Tata McGraw-Hill 
Company Ltd, 2008) 
2. Statistical and Thermal Physics: an introduction by S.Lokanathan and R.S.Gambhir.    
( P.H.I., 1991). 
3. Statistical Mechanics by R. K. Patharia.(Oxford: Butterworth, 1996). 
4. Statistical Mechanics by K. Huang (Wiley, 1987.)
5. Statistical Mechanics by eyring eyring eyring 59 
Paper-23-PHHT-621: Solid State Physics 
THEORY               Marks: 100  
Crystal Structure 
  
Solids :- Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a 
Basis – Central and Non-Central Elements. Unit Cell. Reciprocal Lattice. Types of Lattices. 
Brillouin Zones. Types of Bonds. Ionic Bond. Covalent Bond. Van der Waals Bond. Diffraction 
of x-rays by Crystals. Bragg’s Law.  
             (8 Lectures)
Elementary Lattice Dynamics 
Lattice Vibrations and Phonons :-  Linear Monoatomic and Diatomic Chains. Acoustical and 
Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Einstein and 
Debye Theories of Specific Heat of Solids.  T
3
Law.    
                                               (6 Lectures) 
Magnetic Properties of Matter 
Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia – and 
Paramagnetic Domains. Quantum Mechanical Treatment  of Paramagnetism. Curie’s law, 
Weiss’s Theory of Ferromagnetism and Ferromagnetic  Domains. Discussion of B-H Curve. 
Hysteresis and Energy Loss.  
                                                                                                                (8 Lectures) 
Dielectric Properties of Materials 
Polarization. Local Electric Field at an Atom. Depolarization Field.  Dielectric Constant. 
Electric Susceptibility. Polarizability. Classical  Theory of Electric Polarizability. ClausiusMosotti Equation. Normal and Anomalous Dispersion. Complex Dielectric Constant.  
                                                   (6 Lectures) 
Electrical Properties of Materials 
Elementary Band Theory of Solids.  Bloch Theorm.  Kronig-Penney Model.  Effective Mass of 
Electron. Concept of Holes. Band Gaps. Energy Band  Diagram and Classification of Solids. 
Law of Mass Action. Insulators, and Semiconductors. Direct and Indirect Band Gap. Intrinsic 
and Extrinsic Semiconductors. p- and n- Type Semiconductors. Conductivity in 
Semiconductors.  Hall Effect in Semiconductors (Qualitative Discussion Only)         
                 (10 Lectures) 60 
Superconductivity: 
Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I 
and type II Superconductors, London’s Equation and Penetration Depth.    
            (6 Lectures) 
Isotope effect. Idea of BCS theory (No derivation): Cooper Pair and Coherence length. 
Variation of Superconducting Energy Gap with Temperature. Experimental Evidence of 
Phonons. Josephson Effect.   
                                                                                             (4 Lectures) 
Reference Books
1. Charles Kittel, Introduction to Solid State Physics, 7th Edition, John Wiley and Sons, 
Inc. 
2. A J Dekkar, Solid State Physics, Macmillan India Limited, 2000. 
3. J. S. Blackmore, Solid State Physics, Cambridge University Press, Cambridge. 
4. N. W. Ascroft and N. D. Mermin, Solid State Physics, (Harcourt Asia, Singapore, 
2003). 
5. M. Ali Omar, Elementary solid state physics: principles and applications, (Pearson 
Education, 1999)61 
Paper-24-PHHT-622:  Nuclear & Particle Physics 
THEORY                         Marks: 100  
Structure of nuclei:-  Basic Properties of Nuclei: (1) Mass,  (2) Radii,  (3) Charge,  (4) Angular 
Momentum, (5) Spin,  (5) Magnetic Moment (μ),  (6) Stability and  (7) Binding Energy.  
                                                                                                                  (3 Lectures) 
Radioactivity :- Law of Radioactive Decay. Half-life, Theory of Successive Radioactive 
Transformations. Radioactive Series, Binding Energy, Mass Formula.  
                     (4 Lectures) 
α-decay :- Range of α-particles, Geiger-Nuttal law and α-particle Spectra. Gamow Theory of 
Alpha Decay.    
                                                                                                           (4 Lectures) 
β-decay :- Energy Spectra and Neutrino Hypothesis.     
                                               (2 Lectures) 
γ-decay :- Origin of γ-rays, Nuclear Isomerism and Internal Conversion.   
             (2 Lectures)
Nuclear Reactions :- Types of Reactions and Conservation Laws. Concept of Compound and Direct 
Reaction. Compound Nucleus. Scattering Problem in One Dimension : Reflection and Transmission 
by a Finite Potential Step. Stationary Solutions, Attractive and Repulsive Potential Barriers. 
Scattering Cross-section.  Reaction Rate. Q-value of Reaction.  Fission and Fusion. 
                                                                                                              (8 Lectures) 
Nuclear Models :- Liquid Drop Model. Mass formula. Shell Model. Meson Theory of Nuclear 
Forces and Discovery of Pion.       
                                                                               (6 lectures) 
Accelerators :- Van de Graaff Generator, Linear Accelerator, Cyclotron, Betatron, and Light 
and Heavy Ion Synchro-Cyclotron. Idea of Large Hadron Collider.   
                         (4 Lectures) 
Detectors of Nuclear Radiations :-  Interaction of Energetic particles with matter. Ionization 
chamber. GM Counter. Cloud Chambers. Wilson Cloud Chamber. Bubble Chamber. Scintillatipn 
Detectors. Semiconductor Detectors (Qualitative Discussion Only). An Idea about Detectors used in 
Large Hadron Collider.     
                                (6 Lectures) 
Cosmic Rays :- Nature and  Properties.    
                                                                                (1 Lectures) 
Elementary Particles (Qualitative Discussion Only)  :- Fundamental Interactions.  
Classification of Elementary Particles. Particles and Antiparticles. Baryons, Hyperons, 
Leptons,  and  Mesons.  Elementary Particle Quantum Numbers  :  Baryon   Number,   
Lepton  Number, Strangeness,  Electric  Charge,  Hypercharge  and  Isospin.    Eightfold    62 
way   :  Supermultiplets of Mesons and Baryons. Conservation Laws and Symmetry. 
Different Types of Quarks and Quark Contents of Spin ½ Baryons. Photons, Gravitons, 
Gluons, Charms and Intermediate Vector Bosons. Idea of Standard Model. Higg’s Boson.     
                                         (8 Lectures) 
Suggested Books:
1. Concepts of Modern Physics by Arthur Beiser (McGraw-Hill Book Company, 1987) 
2. Concepts of nuclear physics by Bernard L.Cohen.(New Delhi: Tata Mcgraw Hill, 
1998). 
3. Introduction to the physics of nuclei and particles by R.A. Dunlap.(Singapore: 
Thomson Asia, 2004). 
4. Nuclear physics by Irving Kaplan. (Oxford & IBH, 1962). 
5. Introductory nuclear physics by Kenneth S. Krane.( John Wiley & Sons, 1988). 63 
 Physics Lab VII 
PRACTICALS                          Marks: 100
1: Polarization 
  
1. To verify the Law of Malus for Plane  Polarized Light. 
2. To determine the Specific Rotation of cane sugar using Polarimeter. 
3. To analyze Elliptically Polarized Light by using a Babinet’s Compensator.  
4. To measure the Numerical Aperture of an Optical Fibre. 
2:  Measurement of Magnetic Field and Related Parameters 
1. Measurement of field strength B and its variation in a Solenoid (Determination of 
dB/dx). 
2. To draw the BH curve of iron by using a Solenoid and to determine the energy loss 
due to Hysteresis. 
3:  Measurement in Solid State Physics 
1. To measure the Resistivity of a Ge Crystal with Temperature by Four-Probe Method 
(from room temperature to 200 
o
C) and to determine the Band Gap Eg for it. 
2. To determine the Hall Coefficient and the Hall angle of a Semiconductor. 
3. To study the PE Hysteresis loop of a Ferroelectric Crystal. 
4. To measure the Magnetic susceptibility of Solids and Liquids. 
Note
4. Each College should set up at least all the Practicals from the above list. 
5. Each Student is required to perform 6 Practicals by taking at least 1 Practical from 
each of the units 605.1 to 605.3. 
Text and Reference Books
1. Geeta Sanon, BSc Practical Physics, 1
st
 Edn. (2007), R. Chand & Co. 
2. B. L. Worsnop and H. T. Flint, Advanced Practical Physics, Asia Publishing House, New 
Delhi. 
3. Indu Prakash and Ramakrishna, A Text Book of Practical Physics, Kitab Mahal, New 
Delhi. 
4. D. P. Khandelwal, A Laboratory Manual of Physics for Undergraduate Classes, Vani 
Publication House, New Delhi. 
5. Nelson and Jon  Ogborn, Practical Physics. 64 
PHHP-606:  Physics Lab-VIII 
PRACTICALS                          Marks: 100
  
1 : Multivibrators and Sweep Circuits 
            
1. To study the characteristics of a UJT and design a simple Relaxation Oscillator. 
2. To design an Astable Multivibrator of given specifications using 555 Timer. 
3. To design a Monostable Multivibrator of given specifications using 555 Timer and to 
measure the Pulse-Width of its output. 
4. To design a Sweep of given Amplitude and Time. 
2 :  Modulation 
1. To study Amplitude Modulation using Transistor. 
2. To study Pulse Width / Pulse Position and Pulse Amplitude Modulation using ICs. 
3.
3 :  Operational Amplifier based Experiments 
1. To design an Amplifier of given gain using an op-amp in inverting and non-inverting 
configurations and to study its response curve.  
2. To investigate the use of an op-amp as an Integrator. 
3. To investigate the use of an op-amp as a Differentiator. 
4. To design an analog circuit to simulate the solution of a first/second order 
differential equation. 
5. To design an op-amp Oscillator. 
Note
1. Each college should set up all the Practicals from the above list. 
2. Each student is required to perform at least 8 Practicals by taking at least 2 Practicals 
from each of the units 606.1 to 606.3. 
3. The students should be encouraged to do practicals  by using Breadboard or 
Softwares like PSpice wherever possible. 
Text and Reference Books
1. Geeta Sanon, BSc Practical Physics, 1
st
 Edn. (2007), R. Chand & Co. 
2. Nelson and Jon Ogborn, Practical Physics. 
3. Adrian C. Melissinos, Jim Napolitano, Experiments in Modern Physics. 
4. Paul B. Zbar and Albert B. Malvino, Basic Electronics (A Text-Lab Manual), Tata 
McGraw Hill. 
5. A. P. Malvino, Electronics. 
6. John Morris, Analog Electronics. 
7. A P Malvino and D P Leach, Digital Principles and Applications. 

No comments:

Post a Comment